6.
Mayer K, Hafner J
. Localized surface plasmon resonance sensors. Chem Rev. 2011; 111(6):3828-57.
DOI: 10.1021/cr100313v.
View
7.
Theiss J, Pavaskar P, Echternach P, Muller R, Cronin S
. Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. Nano Lett. 2010; 10(8):2749-54.
DOI: 10.1021/nl904170g.
View
8.
Smith J, Yang Q, Jain P
. Identification of a critical intermediate in galvanic exchange reactions by single-nanoparticle-resolved kinetics. Angew Chem Int Ed Engl. 2014; 53(11):2867-72.
DOI: 10.1002/anie.201309307.
View
9.
Kim J, Kim J, Ha M, Nam J
. Cyclodextrin-Based Synthesis and Host-Guest Chemistry of Plasmonic Nanogap Particles with Strong, Quantitative, and Highly Multiplexable Surface-Enhanced Raman Scattering Signals. J Phys Chem Lett. 2020; 11(19):8358-8364.
DOI: 10.1021/acs.jpclett.0c02624.
View
10.
Kleinman S, Frontiera R, Henry A, Dieringer J, Van Duyne R
. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys Chem Chem Phys. 2012; 15(1):21-36.
DOI: 10.1039/c2cp42598j.
View
11.
Lim D, Jeon K, Hwang J, Kim H, Kwon S, Suh Y
. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotechnol. 2011; 6(7):452-60.
DOI: 10.1038/nnano.2011.79.
View
12.
Lee S, Lee S, Park W, Lee S, Kwon S, Oh M
. Plasmonic Annular Nanotrenches with 1 nm Nanogaps for Detection of SARS-CoV-2 Using SERS-Based Immunoassay. Nano Lett. 2024; 24(14):4233-4240.
DOI: 10.1021/acs.nanolett.4c00451.
View
13.
Yoo S, Kim J, Kim J, Son J, Lee S, Hilal H
. Three-Dimensional Gold Nanosphere Hexamers Linked with Metal Bridges: Near-Field Focusing for Single Particle Surface Enhanced Raman Scattering. J Am Chem Soc. 2020; 142(36):15412-15419.
DOI: 10.1021/jacs.0c06463.
View
14.
Wang H, Levin C, Halas N
. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates. J Am Chem Soc. 2005; 127(43):14992-3.
DOI: 10.1021/ja055633y.
View
15.
Kim J, Lee C, Lee Y, Lee J, Park S, Park S
. Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures. Adv Mater. 2021; 33(46):e2006966.
DOI: 10.1002/adma.202006966.
View
16.
Zhou J, Xiong Q, Ma J, Ren J, Messersmith P, Chen P
. Polydopamine-Enabled Approach toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality. ACS Nano. 2016; 10(12):11066-11075.
PMC: 5660867.
DOI: 10.1021/acsnano.6b05951.
View
17.
Zhao Q, Lee J, Oh M, Park W, Lee S, Jung I
. Three-Dimensional Au Octahedral Nanoheptamers: Single-Particle and Bulk Near-Field Focusing for Surface-Enhanced Raman Scattering. Nano Lett. 2024; 24(4):1074-1080.
DOI: 10.1021/acs.nanolett.3c03469.
View
18.
Yoo S, Lee J, Hilal H, Jung I, Park W, Lee J
. Nesting of multiple polyhedral plasmonic nanoframes into a single entity. Nat Commun. 2022; 13(1):4544.
PMC: 9352762.
DOI: 10.1038/s41467-022-32261-9.
View
19.
Payton J, Morton S, Moore J, Jensen L
. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering. Acc Chem Res. 2013; 47(1):88-99.
DOI: 10.1021/ar400075r.
View
20.
Lin L, Zhang Q, Li X, Qiu M, Jiang X, Jin W
. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering. ACS Nano. 2018; 12(7):6492-6503.
DOI: 10.1021/acsnano.7b08224.
View