» Articles » PMID: 31465350

Accounting for Focal Shift in the Shack-Hartmann Wavefront Sensor

Overview
Journal Opt Lett
Specialty Ophthalmology
Date 2019 Aug 30
PMID 31465350
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The Shack-Hartmann wavefront sensor samples a beam of light using an array of lenslets, each of which creates an image onto a pixelated sensor. These images translate from their nominal position by a distance proportional to the average wavefront slope over the corresponding lenslet. This principle fails in partially and/or non-uniformly illuminated lenslets when the lenslet array is focused to maximize peak intensity, leading to image centroid bias. Here, we show that this bias is due to the low Fresnel number of the lenslets, which shifts the diffraction focus away from the geometrical focus. We then demonstrate how the geometrical focus can be empirically found by minimizing the bias in partially illuminated lenslets.

Citing Articles

Quantification of optical lensing by cellular structures in the living human eye.

Bedggood P, Ding Y, Dierickx D, Dubra A, Metha A Biomed Opt Express. 2025; 16(2):473-498.

PMID: 39958845 PMC: 11828430. DOI: 10.1364/BOE.547734.


Ultrafast adaptive optics for imaging the living human eye.

Liu Y, Crowell J, Kurokawa K, Bernucci M, Ji Q, Lassoued A Nat Commun. 2024; 15(1):10409.

PMID: 39613735 PMC: 11607088. DOI: 10.1038/s41467-024-54687-z.


Statistical optimal parameters obtained by using clinical human ocular aberrations for high-precision aberration measurement.

Yue X, Yang Y, Chen S, Dai H Int Ophthalmol. 2024; 44(1):292.

PMID: 38940969 DOI: 10.1007/s10792-024-03176-9.


Evolution of adaptive optics retinal imaging [Invited].

Williams D, Burns S, Miller D, Roorda A Biomed Opt Express. 2023; 14(3):1307-1338.

PMID: 36950228 PMC: 10026580. DOI: 10.1364/BOE.485371.


Quantitative Phase Imaging: Recent Advances and Expanding Potential in Biomedicine.

Nguyen T, Pradeep S, Judson-Torres R, Reed J, Teitell M, Zangle T ACS Nano. 2022; 16(8):11516-11544.

PMID: 35916417 PMC: 10112851. DOI: 10.1021/acsnano.1c11507.


References
1.
Pfund J, Lindlein N, Schwider J . Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm. Opt Lett. 2007; 23(13):995-7. DOI: 10.1364/ol.23.000995. View

2.
Zou W, Qi X, Burns S . Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm. Biomed Opt Express. 2011; 2(7):1986-2004. PMC: 3130583. DOI: 10.1364/BOE.2.001986. View

3.
Rha J, Jonnal R, Thorn K, Qu J, Zhang Y, Miller D . Adaptive optics flood-illumination camera for high speed retinal imaging. Opt Express. 2009; 14(10):4552-69. DOI: 10.1364/oe.14.004552. View

4.
Yoon G, Pantanelli S, Nagy L . Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes. J Biomed Opt. 2006; 11(3):30502. DOI: 10.1117/1.2197860. View

5.
Levine B, Martinsen E, Wirth A, Jankevics A, Toledo-Quinones M, Landers F . Horizontal Line-of-Sight Turbulence Over Near-Ground Paths and Implications for Adaptive Optics Corrections in Laser Communications. Appl Opt. 2008; 37(21):4553-60. DOI: 10.1364/ao.37.004553. View