» Articles » PMID: 31438573

Absorption and Emission Spectroscopic Investigation of the Thermal Dynamics of the Archaerhodopsin 3 Based Fluorescent Voltage Sensor QuasAr1

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2019 Aug 24
PMID 31438573
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

QuasAr1 is a fluorescent voltage sensor derived from Archaerhodopsin 3 (Arch) of by directed evolution. Here we report absorption and emission spectroscopic studies of QuasAr1 in Tris buffer at pH 8. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation spectra were determined. The thermal stability of QuasAr1 was studied by long-time attenuation coefficient measurements at room temperature (23 ± 2 °C) and at 2.5 ± 0.5 °C. The apparent melting temperature was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 65 ± 3 °C). In the protein melting process the originally present protonated retinal Schiff base (PRSB) with absorption maximum at 580 nm converted to de-protonated retinal Schiff base (RSB) with absorption maximum at 380 nm. Long-time storage of QuasAr1 at temperatures around 2.5 °C and around 23 °C caused gradual protonated retinal Schiff base isomer changes to other isomer conformations, de-protonation to retinal Schiff base isomers, and apoprotein structure changes showing up in ultraviolet absorption increase. Reaction coordinate schemes are presented for the thermal protonated retinal Schiff base isomerizations and deprotonations in parallel with the dynamic apoprotein restructurings.

Citing Articles

Fluorescence of the Retinal Chromophore in Microbial and Animal Rhodopsins.

Nikolaev D, Shtyrov A, Vyazmin S, Vasin A, Panov M, Ryazantsev M Int J Mol Sci. 2023; 24(24).

PMID: 38139098 PMC: 10743670. DOI: 10.3390/ijms242417269.


QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins.

Silapetere A, Hwang S, Hontani Y, Fernandez Lahore R, Balke J, Escobar F Nat Commun. 2022; 13(1):5501.

PMID: 36127376 PMC: 9489792. DOI: 10.1038/s41467-022-33084-4.


The Physical Chemistry and Chemical Physics (PCCP) Section of the in Its Publications: The First 300 Thematic Articles in the First 3 Years.

Mikhailov O Int J Mol Sci. 2022; 23(1).

PMID: 35008667 PMC: 8745423. DOI: 10.3390/ijms23010241.


NeoR, a near-infrared absorbing rhodopsin.

Broser M, Spreen A, Konold P, Schiewer E, Adam S, Borin V Nat Commun. 2020; 11(1):5682.

PMID: 33173168 PMC: 7655827. DOI: 10.1038/s41467-020-19375-8.


Absorption and Emission Spectroscopic Investigation of the Thermal Dynamics of the Archaerhodopsin 3 Based Fluorescent Voltage Sensor Archon2.

Penzkofer A, Silapetere A, Hegemann P Int J Mol Sci. 2020; 21(18).

PMID: 32911811 PMC: 7555599. DOI: 10.3390/ijms21186576.


References
1.
Engqvist M, McIsaac R, Dollinger P, Flytzanis N, Abrams M, Schor S . Directed evolution of Gloeobacter violaceus rhodopsin spectral properties. J Mol Biol. 2014; 427(1):205-20. DOI: 10.1016/j.jmb.2014.06.015. View

2.
Tsytsarev V, Liao L, Kong K, Liu Y, Erzurumlu R, Olivo M . Recent progress in voltage-sensitive dye imaging for neuroscience. J Nanosci Nanotechnol. 2014; 14(7):4733-44. DOI: 10.1166/jnn.2014.9531. View

3.
Wilson J, Clark R, Banderali U, Giles W . Measurement of the membrane potential in small cells using patch clamp methods. Channels (Austin). 2011; 5(6):530-7. PMC: 3265801. DOI: 10.4161/chan.5.6.17484. View

4.
Penzkofer A, Scheib U, Stehfest K, Hegemann P . Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae. Int J Mol Sci. 2017; 18(10). PMC: 5666781. DOI: 10.3390/ijms18102099. View

5.
Broussard G, Liang R, Tian L . Monitoring activity in neural circuits with genetically encoded indicators. Front Mol Neurosci. 2014; 7:97. PMC: 4256991. DOI: 10.3389/fnmol.2014.00097. View