» Articles » PMID: 31393064

TDP2 Negatively Regulates Axon Regeneration by Inducing SUMOylation of an Ets Transcription Factor

Overview
Journal EMBO Rep
Specialty Molecular Biology
Date 2019 Aug 9
PMID 31393064
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

In Caenorhabditis elegans, the JNK MAP kinase (MAPK) pathway is important for axon regeneration. The JNK pathway is activated by a signaling cascade consisting of the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury in a process involving the transcription factors ETS-4 and CEBP-1. Here, we find that svh-14/mxl-1, a gene encoding a Max-like transcription factor, is required for activation of svh-2 expression in response to axonal injury. We show that MXL-1 binds to and inhibits the function of TDPT-1, a C. elegans homolog of mammalian tyrosyl-DNA phosphodiesterase 2 [TDP2; also called Ets1-associated protein II (EAPII)]. Deletion of tdpt-1 suppresses the mxl-1 defect, but not the ets-4 defect, in axon regeneration. TDPT-1 induces SUMOylation of ETS-4, which inhibits ETS-4 transcriptional activity, and MXL-1 counteracts this effect. Thus, TDPT-1 interacts with two different transcription factors in axon regeneration.

Citing Articles

Transcriptome profiling of the Caenorhabditis elegans intestine reveals that ELT-2 negatively and positively regulates intestinal gene expression within the context of a gene regulatory network.

Williams R, King D, Mastroianni I, Hill J, Apenes N, Ramirez G Genetics. 2023; 224(4).

PMID: 37183501 PMC: 10411582. DOI: 10.1093/genetics/iyad088.


F-Box Protein Promotes Axon Regeneration by Inducing Degradation of the Mad Transcription Factor.

Shimizu T, Pastuhov S, Hanafusa H, Sakai Y, Todoroki Y, Hisamoto N J Neurosci. 2021; 41(11):2373-2381.

PMID: 33514673 PMC: 7984584. DOI: 10.1523/JNEUROSCI.1024-20.2021.


TDP2 negatively regulates axon regeneration by inducing SUMOylation of an Ets transcription factor.

Sakai Y, Hanafusa H, Pastuhov S, Shimizu T, Li C, Hisamoto N EMBO Rep. 2019; 20(10):e47517.

PMID: 31393064 PMC: 6776894. DOI: 10.15252/embr.201847517.

References
1.
Jones D, Crowe E, Stevens T, Candido E . Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol. 2002; 3(1):RESEARCH0002. PMC: 150449. DOI: 10.1186/gb-2001-3-1-research0002. View

2.
Leight E, Murphy J, Fantz D, Pepin D, Schneider D, Ratliff T . Conversion of the LIN-1 ETS protein of Caenorhabditis elegans from a SUMOylated transcriptional repressor to a phosphorylated transcriptional activator. Genetics. 2015; 199(3):761-75. PMC: 4349070. DOI: 10.1534/genetics.114.172668. View

3.
Li C, Hisamoto N, Nix P, Kanao S, Mizuno T, Bastiani M . The growth factor SVH-1 regulates axon regeneration in C. elegans via the JNK MAPK cascade. Nat Neurosci. 2012; 15(4):551-7. DOI: 10.1038/nn.3052. View

4.
Frokjaer-Jensen C, Davis M, Hopkins C, Newman B, Thummel J, Olesen S . Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet. 2008; 40(11):1375-83. PMC: 2749959. DOI: 10.1038/ng.248. View

5.
Brenner S . The genetics of Caenorhabditis elegans. Genetics. 1974; 77(1):71-94. PMC: 1213120. DOI: 10.1093/genetics/77.1.71. View