» Articles » PMID: 31373555

Natural Selection and Repeated Patterns of Molecular Evolution Following Allopatric Divergence

Overview
Journal Elife
Specialty Biology
Date 2019 Aug 3
PMID 31373555
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Although geographic isolation is a leading driver of speciation, the tempo and pattern of divergence at the genomic level remain unclear. We examine genome-wide divergence of putatively single-copy orthologous genes (POGs) in 20 allopatric species/variety pairs from diverse angiosperm clades, with 16 pairs reflecting the classic eastern Asia-eastern North America floristic disjunction. In each pair, >90% of POGs are under purifying selection, and <10% are under positive selection. A set of POGs are under strong positive selection, 14 of which are shared by 10-15 pairs, and one shared by all pairs; 15 POGs are annotated to biological processes responding to various stimuli. The relative abundance of POGs under different selective forces exhibits a repeated pattern among pairs despite an ~10 million-year difference in divergence time. Species divergence times are positively correlated with abundance of POGs under moderate purifying selection, but negatively correlated with abundance of POGs under strong purifying selection.

Citing Articles

Genome-wide identification, phylogenetic classification of histone acetyltransferase genes, and their expression analysis in sugar beet (Beta vulgaris L.) under salt stress.

Yolcu S, Skorupa M, Uras M, Mazur J, Ozyigit I Planta. 2024; 259(4):85.

PMID: 38448714 PMC: 10917867. DOI: 10.1007/s00425-024-04361-x.


Foliar endophyte diversity in Eastern Asian-Eastern North American disjunct tree species - influences of host identity, environment, phylogeny, and geographic isolation.

Zhou W, Shi W, Soltis P, Soltis D, Xiang Q Front Plant Sci. 2024; 14:1274746.

PMID: 38192694 PMC: 10773735. DOI: 10.3389/fpls.2023.1274746.


OrthoSNAP: A tree splitting and pruning algorithm for retrieving single-copy orthologs from gene family trees.

Steenwyk J, Goltz D, Buida 3rd T, Li Y, Shen X, Rokas A PLoS Biol. 2022; 20(10):e3001827.

PMID: 36228036 PMC: 9595520. DOI: 10.1371/journal.pbio.3001827.


A New Pipeline for Removing Paralogs in Target Enrichment Data.

Zhou W, Soghigian J, Xiang Q Syst Biol. 2021; 71(2):410-425.

PMID: 34146111 PMC: 8974407. DOI: 10.1093/sysbio/syab044.


How predictable is genome evolution?.

Coathup M, Osborne O, Savolainen V Elife. 2019; 8.

PMID: 31517601 PMC: 6744270. DOI: 10.7554/eLife.50784.


References
1.
Barrett R, Hoekstra H . Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet. 2011; 12(11):767-80. DOI: 10.1038/nrg3015. View

2.
Wolf J, Ellegren H . Making sense of genomic islands of differentiation in light of speciation. Nat Rev Genet. 2016; 18(2):87-100. DOI: 10.1038/nrg.2016.133. View

3.
Chen F, Mackey A, Vermunt J, Roos D . Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS One. 2007; 2(4):e383. PMC: 1849888. DOI: 10.1371/journal.pone.0000383. View

4.
Yang Z, Nielsen R . Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000; 17(1):32-43. DOI: 10.1093/oxfordjournals.molbev.a026236. View

5.
Li Z, De La Torre A, Sterck L, Canovas F, Avila C, Merino I . Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants. Genome Biol Evol. 2017; 9(5):1130-1147. PMC: 5414570. DOI: 10.1093/gbe/evx070. View