» Articles » PMID: 31350333

Regulation of Flagellar Motor Switching by C-di-GMP Phosphodiesterases in

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2019 Jul 28
PMID 31350333
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The second messenger cyclic diguanylate (c-di-GMP) plays a prominent role in regulating flagellum-dependent motility in the single-flagellated pathogenic bacterium The c-di-GMP-mediated signaling pathways and mechanisms that control flagellar output remain to be fully unveiled. Studying surface-tethered and free-swimming PAO1 cells, we found that the overexpression of an exogenous diguanylate cyclase (DGC) raises the global cellular c-di-GMP concentration and thereby inhibits flagellar motor switching and decreases motor speed, reducing swimming speed and reversal frequency, respectively. We noted that the inhibiting effect of c-di-GMP on flagellar motor switching, but not motor speed, is exerted through the c-di-GMP-binding adaptor protein MapZ and associated chemotactic pathways. Among the 22 putative c-di-GMP phosphodiesterases, we found that three of them (DipA, NbdA, and RbdA) can significantly inhibit flagellar motor switching and swimming directional reversal in a MapZ-dependent manner. These results disclose a network of c-di-GMP-signaling proteins that regulate chemotactic responses and flagellar motor switching in and establish MapZ as a key signaling hub that integrates inputs from different c-di-GMP-signaling pathways to control flagellar output and bacterial motility. We rationalized these experimental findings by invoking a model that postulates the regulation of flagellar motor switching by subcellular c-di-GMP pools.

Citing Articles

Novel function of single-target regulator NorR involved in swarming motility and biofilm formation revealed in Vibrio alginolyticus.

Chen T, Zhou X, Feng R, Shi S, Chen X, Wei B BMC Biol. 2024; 22(1):253.

PMID: 39506750 PMC: 11542441. DOI: 10.1186/s12915-024-02057-y.


Chemosensory systems interact to shape relevant traits for bacterial plant pathogenesis.

Munar-Palmer M, Santamaria-Hernando S, Liedtke J, Ortega D, Lopez-Torrejon G, Rodriguez-Herva J mBio. 2024; 15(7):e0087124.

PMID: 38899869 PMC: 11253619. DOI: 10.1128/mbio.00871-24.


Bacteriophage protein Dap1 regulates evasion of antiphage immunity and Pseudomonas aeruginosa virulence impacting phage therapy in mice.

Le S, Wei L, Wang J, Tian F, Yang Q, Zhao J Nat Microbiol. 2024; 9(7):1828-1841.

PMID: 38886583 DOI: 10.1038/s41564-024-01719-5.


Bacterial respiratory inhibition triggers dispersal of biofilms.

Zemke A, DAmico E, Torres A, Carreno-Florez G, Keeley P, DuPont M Appl Environ Microbiol. 2023; 89(10):e0110123.

PMID: 37728340 PMC: 10617509. DOI: 10.1128/aem.01101-23.


Characterization of a soluble library of the PAO1 membrane proteome with emphasis on c-di-GMP turnover enzymes.

Scherhag A, Raschle M, Unbehend N, Venn B, Glueck D, Muhlhaus T Microlife. 2023; 4:uqad028.

PMID: 37441524 PMC: 10335732. DOI: 10.1093/femsml/uqad028.


References
1.
Lyczak J, Cannon C, Pier G . Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2000; 2(9):1051-60. DOI: 10.1016/s1286-4579(00)01259-4. View

2.
Stover C, Pham X, Erwin A, Mizoguchi S, Warrener P, Hickey M . Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000; 406(6799):959-64. DOI: 10.1038/35023079. View

3.
Costerton J . Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol. 2001; 9(2):50-2. DOI: 10.1016/s0966-842x(00)01918-1. View

4.
Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S . Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol. 2003; 48(6):1511-24. DOI: 10.1046/j.1365-2958.2003.03525.x. View

5.
Jacobs M, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S . Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2003; 100(24):14339-44. PMC: 283593. DOI: 10.1073/pnas.2036282100. View