» Articles » PMID: 31320681

Avian Influenza A (H7N9) and Related Internet Search Query Data in China

Overview
Journal Sci Rep
Specialty Science
Date 2019 Jul 20
PMID 31320681
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The use of Internet-based systems for infectious disease surveillance has been increasingly explored in recent years. However, few studies have used Internet search query or social media data to monitor spatial and temporal trends of avian influenza in China. This study investigated the potential of using search query and social media data in detecting and monitoring avian influenza A (H7N9) cases in humans in China. We collected weekly data on laboratory-confirmed H7N9 cases in humans, as well as H7N9-related Baidu Search Index (BSI) and Weibo Posting Index (WPI) data in China from 2013 to 2017, to explore the spatial and temporal trends of H7N9 cases and H7N9-related Internet search queries. Our findings showed a positive relationship of H7N9 cases with BSI and WPI search queries spatially and temporally. The outbreak threshold time and peak time of H7N9-related BSI and WPI searches preceded H7N9 cases in most years. Seasonal autoregressive integrated moving average (SARIMA) models with BSI (β = 0.008, p < 0.001) and WPI (β = 0.002, p = 0.036) were used to predict the number of H7N9 cases. Regression tree model analysis showed that the average H7N9 cases increased by over 2.4-fold (26.8/11) when BSI for H7N9 was >  = 11524. Both BSI and WPI data could be used as indicators to develop an early warning system for H7N9 outbreaks in the future.

Citing Articles

Discussion of the public interest in arthroscopy based on the Baidu index and its implications for nursing care.

Deng J, Yang K, Zhang S, Wang B, Zhang L, Zhao X World J Orthop. 2025; 16(2):101895.

PMID: 40027958 PMC: 11866108. DOI: 10.5312/wjo.v16.i2.101895.


Internet-based Surveillance Systems and Infectious Diseases Prediction: An Updated Review of the Last 10 Years and Lessons from the COVID-19 Pandemic.

McClymont H, Lambert S, Barr I, Vardoulakis S, Bambrick H, Hu W J Epidemiol Glob Health. 2024; 14(3):645-657.

PMID: 39141074 PMC: 11442909. DOI: 10.1007/s44197-024-00272-y.


Precision public health, the key for future outbreak management: A scoping review.

Rajendran E, Hairi F, Krishna Supramaniam R, T Mohd T Digit Health. 2024; 10:20552076241256877.

PMID: 39139190 PMC: 11320687. DOI: 10.1177/20552076241256877.


Using geospatial social media data for infectious disease studies: a systematic review.

Jing F, Li Z, Qiao S, Zhang J, Olatosi B, Li X Int J Digit Earth. 2023; 16(1):130-157.

PMID: 37997607 PMC: 10664840. DOI: 10.1080/17538947.2022.2161652.


Predicting pulmonary tuberculosis incidence in China using Baidu search index: an ARIMAX model approach.

Yang J, Zhou J, Luo T, Xie Y, Wei Y, Mai H Environ Health Prev Med. 2023; 28:68.

PMID: 37926526 PMC: 10636285. DOI: 10.1265/ehpm.23-00141.


References
1.
Milinovich G, Williams G, Clements A, Hu W . Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect Dis. 2013; 14(2):160-8. PMC: 7185571. DOI: 10.1016/S1473-3099(13)70244-5. View

2.
Zhang Y, Yakob L, Bonsall M, Hu W . Predicting seasonal influenza epidemics using cross-hemisphere influenza surveillance data and local internet query data. Sci Rep. 2019; 9(1):3262. PMC: 6397245. DOI: 10.1038/s41598-019-39871-2. View

3.
Huang Y, Xu K, Ren D, Ai J, Ji H, Ge A . Probable longer incubation period for human infection with avian influenza A(H7N9) virus in Jiangsu Province, China, 2013. Epidemiol Infect. 2014; 142(12):2647-53. PMC: 9151266. DOI: 10.1017/S0950268814000272. View

4.
Woo H, Cho Y, Shim E, Lee J, Lee C, Kim S . Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea. J Med Internet Res. 2016; 18(7):e177. PMC: 4949385. DOI: 10.2196/jmir.4955. View

5.
Fung I, Fu K, Ying Y, Schaible B, Hao Y, Chan C . Chinese social media reaction to the MERS-CoV and avian influenza A(H7N9) outbreaks. Infect Dis Poverty. 2013; 2(1):31. PMC: 3878123. DOI: 10.1186/2049-9957-2-31. View