» Articles » PMID: 31316076

A Broadband and Strong Visible-light-absorbing Photosensitizer Boosts Hydrogen Evolution

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Jul 19
PMID 31316076
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Developing broadband and strong visible-light-absorbing photosensitizer is highly desired for dramatically improving the utilization of solar energy and boosting artificial photosynthesis. Herein, we develop a facile strategy to co-sensitize Ir-complex with Coumarins and boron dipyrromethene to explore photosensitizer with a broadband covering ca. 50% visible light region (Ir-4). This type of photosensitizer is firstly introduced into water splitting system, exhibiting significantly enhanced performance with over 21 times higher than that of typical Ir(ppy)(bpy), and the turnover number towards Ir-4 reaches to 115840, representing the most active sensitizer among reported molecular photocatalytic systems. Experimental and theoretical investigations reveal that the Ir-mediation not only achieves a long-lived boron dipyrromethene-localized triplet state, but also makes an efficient excitation energy transfer from Coumarin to boron dipyrromethene to trigger the electron transfer. These findings provide an insight for developing broadband and strong visible-light-absorbing multicomponent arrays on molecular level for efficient artificial photosynthesis.

Citing Articles

Self-Assembly Regulated Photocatalysis of Porphyrin-TiO Nanocomposites.

Liu Y, Lv X, Zhong Y, Wang G, Liu S, Chen S Molecules. 2024; 29(16).

PMID: 39202950 PMC: 11357490. DOI: 10.3390/molecules29163872.


Impact of Anchoring Groups on the Photocatalytic Performance of Iridium(III) Complexes and Their Toxicological Analysis.

Yao X, Fan L, Zhang Q, Zheng C, Yang X, Lu Y Molecules. 2024; 29(11).

PMID: 38893440 PMC: 11173709. DOI: 10.3390/molecules29112564.


Triplet quenching pathway control with molecular dyads enables the identification of a highly oxidizing annihilator class.

Bertrams M, Hermainski K, Morsdorf J, Ballmann J, Kerzig C Chem Sci. 2023; 14(32):8583-8591.

PMID: 37592982 PMC: 10430750. DOI: 10.1039/d3sc01725g.


Origin of intersystem crossing in highly distorted organic molecules: a case study with red light-absorbing ,,,-boron-chelated Bodipys.

Zhang X, Sukhanov A, Liu X, Taddei M, Zhao J, Harriman A Chem Sci. 2023; 14(19):5014-5027.

PMID: 37206394 PMC: 10189861. DOI: 10.1039/d3sc00854a.


Strong synergy between gold nanoparticles and cobalt porphyrin induces highly efficient photocatalytic hydrogen evolution.

Sheng H, Wang J, Huang J, Li Z, Ren G, Zhang L Nat Commun. 2023; 14(1):1528.

PMID: 36934092 PMC: 10024688. DOI: 10.1038/s41467-023-37271-9.


References
1.
Zheng B, Sabatini R, Fu W, Eum M, Brennessel W, Wang L . Light-driven generation of hydrogen: New chromophore dyads for increased activity based on Bodipy dye and Pt(diimine)(dithiolate) complexes. Proc Natl Acad Sci U S A. 2015; 112(30):E3987-96. PMC: 4522791. DOI: 10.1073/pnas.1509310112. View

2.
Yuan Y, Yu Z, Liu X, Cai J, Guan Z, Zou Z . Hydrogen photogeneration promoted by efficient electron transfer from iridium sensitizers to colloidal MoS2 catalysts. Sci Rep. 2014; 4:4045. PMC: 3918704. DOI: 10.1038/srep04045. View

3.
Artero V, Chavarot-Kerlidou M, Fontecave M . Splitting water with cobalt. Angew Chem Int Ed Engl. 2011; 50(32):7238-66. DOI: 10.1002/anie.201007987. View

4.
Takizawa S, Ikuta N, Zeng F, Komaru S, Sebata S, Murata S . Impact of Substituents on Excited-State and Photosensitizing Properties in Cationic Iridium(III) Complexes with Ligands of Coumarin 6. Inorg Chem. 2016; 55(17):8723-35. DOI: 10.1021/acs.inorgchem.6b01279. View

5.
Whited M, Djurovich P, Roberts S, Durrell A, Schlenker C, Bradforth S . Singlet and triplet excitation management in a bichromophoric near-infrared-phosphorescent BODIPY-benzoporphyrin platinum complex. J Am Chem Soc. 2010; 133(1):88-96. DOI: 10.1021/ja108493b. View