» Articles » PMID: 31308376

Weakly Supervised Classification of Aortic Valve Malformations Using Unlabeled Cardiac MRI Sequences

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Jul 17
PMID 31308376
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

Biomedical repositories such as the UK Biobank provide increasing access to prospectively collected cardiac imaging, however these data are unlabeled, which creates barriers to their use in supervised machine learning. We develop a weakly supervised deep learning model for classification of aortic valve malformations using up to 4,000 unlabeled cardiac MRI sequences. Instead of requiring highly curated training data, weak supervision relies on noisy heuristics defined by domain experts to programmatically generate large-scale, imperfect training labels. For aortic valve classification, models trained with imperfect labels substantially outperform a supervised model trained on hand-labeled MRIs. In an orthogonal validation experiment using health outcomes data, our model identifies individuals with a 1.8-fold increase in risk of a major adverse cardiac event. This work formalizes a deep learning baseline for aortic valve classification and outlines a general strategy for using weak supervision to train machine learning models using unlabeled medical images at scale.

Citing Articles

Artificial Intelligence in Cardiac Surgery: Transforming Outcomes and Shaping the Future.

Leivaditis V, Beltsios E, Papatriantafyllou A, Grapatsas K, Mulita F, Kontodimopoulos N Clin Pract. 2025; 15(1).

PMID: 39851800 PMC: 11763739. DOI: 10.3390/clinpract15010017.


Artificial Intelligence in the Screening, Diagnosis, and Management of Aortic Stenosis.

Zhang Y, Wang M, Zhang E, Wu Y Rev Cardiovasc Med. 2024; 25(1):31.

PMID: 39077660 PMC: 11262349. DOI: 10.31083/j.rcm2501031.


Deep learning with noisy labels in medical prediction problems: a scoping review.

Wei Y, Deng Y, Sun C, Lin M, Jiang H, Peng Y J Am Med Inform Assoc. 2024; 31(7):1596-1607.

PMID: 38814164 PMC: 11187424. DOI: 10.1093/jamia/ocae108.


Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging.

Wang Y, Yang K, Wen Y, Wang P, Hu Y, Lai Y Nat Med. 2024; 30(5):1471-1480.

PMID: 38740996 PMC: 11108784. DOI: 10.1038/s41591-024-02971-2.


Analysis of 3D pathology samples using weakly supervised AI.

Song A, Williams M, Williamson D, Chow S, Jaume G, Gao G Cell. 2024; 187(10):2502-2520.e17.

PMID: 38729110 PMC: 11168832. DOI: 10.1016/j.cell.2024.03.035.


References
1.
Gulshan V, Peng L, Coram M, Stumpe M, Wu D, Narayanaswamy A . Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016; 316(22):2402-2410. DOI: 10.1001/jama.2016.17216. View

2.
Xu Y, Zhu J, Chang E, Lai M, Tu Z . Weakly supervised histopathology cancer image segmentation and classification. Med Image Anal. 2014; 18(3):591-604. DOI: 10.1016/j.media.2014.01.010. View

3.
Craven M, Kumlien J . Constructing biological knowledge bases by extracting information from text sources. Proc Int Conf Intell Syst Mol Biol. 2000; :77-86. View

4.
Miller K, Alfaro-Almagro F, Bangerter N, Thomas D, Yacoub E, Xu J . Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci. 2016; 19(11):1523-1536. PMC: 5086094. DOI: 10.1038/nn.4393. View

5.
van der Walt S, Schonberger J, Nunez-Iglesias J, Boulogne F, Warner J, Yager N . scikit-image: image processing in Python. PeerJ. 2014; 2:e453. PMC: 4081273. DOI: 10.7717/peerj.453. View