» Articles » PMID: 31304389

Deep Learning and Alternative Learning Strategies for Retrospective Real-world Clinical Data

Overview
Journal NPJ Digit Med
Date 2019 Jul 16
PMID 31304389
Citations 77
Authors
Affiliations
Soon will be listed here.
Abstract

In recent years, there is increasing enthusiasm in the healthcare research community for artificial intelligence to provide big data analytics and augment decision making. One of the prime reasons for this is the enormous impact of deep learning for utilization of complex healthcare big data. Although deep learning is a powerful analytic tool for the complex data contained in electronic health records (EHRs), there are also limitations which can make the choice of deep learning inferior in some healthcare applications. In this paper, we give a brief overview of the limitations of deep learning illustrated through case studies done over the years aiming to promote the consideration of alternative analytic strategies for healthcare.

Citing Articles

Patient-Centric In Vitro Fertilization Prognostic Counseling Using Machine Learning for the Pragmatist.

Yao M, Jenkins J, Nguyen E, Swanson T, Menabrito M Semin Reprod Med. 2024; 42(2):112-129.

PMID: 39379046 PMC: 11581823. DOI: 10.1055/s-0044-1791536.


Deep learning models for tendinopathy detection: a systematic review and meta-analysis of diagnostic tests.

Droppelmann G, Rodriguez C, Smague D, Jorquera C, Feijoo F EFORT Open Rev. 2024; 9(10):941-952.

PMID: 39360789 PMC: 11457807. DOI: 10.1530/EOR-24-0016.


Deeply-Learned Generalized Linear Models with Missing Data.

Lim D, Rashid N, Oliva J, Ibrahim J J Comput Graph Stat. 2024; 33(2):638-650.

PMID: 39184956 PMC: 11339858. DOI: 10.1080/10618600.2023.2276122.


Deep learning-based multimodal fusion of the surface ECG and clinical features in prediction of atrial fibrillation recurrence following catheter ablation.

Qiu Y, Guo H, Wang S, Yang S, Peng X, Xiayao D BMC Med Inform Decis Mak. 2024; 24(1):225.

PMID: 39118118 PMC: 11308714. DOI: 10.1186/s12911-024-02616-x.


Artificial Intelligence vs. Doctors: Diagnosing Necrotizing Enterocolitis on Abdominal Radiographs.

Weller J, Scheese D, Tragesser C, Yi P, Alaish S, Hackam D J Pediatr Surg. 2024; 59(10):161592.

PMID: 38955625 PMC: 11401766. DOI: 10.1016/j.jpedsurg.2024.06.001.


References
1.
Shameer K, Johnson K, Glicksberg B, Dudley J, Sengupta P . Machine learning in cardiovascular medicine: are we there yet?. Heart. 2018; 104(14):1156-1164. DOI: 10.1136/heartjnl-2017-311198. View

2.
Wu S, Liu S, Sohn S, Moon S, Wi C, Juhn Y . Modeling asynchronous event sequences with RNNs. J Biomed Inform. 2018; 83:167-177. PMC: 6103779. DOI: 10.1016/j.jbi.2018.05.016. View

3.
Hu G, Peng X, Yang Y, Hospedales T, Verbeek J . Frankenstein: Learning Deep Face Representations Using Small Data. IEEE Trans Image Process. 2017; 27(1):293-303. DOI: 10.1109/TIP.2017.2756450. View

4.
Miotto R, Li L, Kidd B, Dudley J . Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep. 2016; 6:26094. PMC: 4869115. DOI: 10.1038/srep26094. View

5.
Xiao C, Choi E, Sun J . Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J Am Med Inform Assoc. 2018; 25(10):1419-1428. PMC: 6188527. DOI: 10.1093/jamia/ocy068. View