» Articles » PMID: 31298839

Accelerating Lipidomic Method Development Through Simulation

Overview
Journal Anal Chem
Specialty Chemistry
Date 2019 Jul 13
PMID 31298839
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Judicious selection of mass spectrometry (MS) acquisition parameters is essential for effectively profiling the broad diversity and dynamic range of biomolecules. Typically, acquisition parameters are individually optimized to maximally characterize analytes from each new sample matrix. This time-consuming process often ignores the synergistic relationship between MS method parameters, producing suboptimal results. Here we detail the creation of an algorithm which accurately simulates LC-MS/MS lipidomic data acquisition performance for a benchtop quadrupole-Orbitrap MS system. By coupling this simulation tool with a genetic algorithm for constrained parameter optimization, we demonstrate the efficient identification of LC-MS/MS method parameter sets individually suited for specific sample matrices. Finally, we utilize the simulation to examine how continued developments in MS acquisition speed and sensitivity will further increase the power of MS lipidomics as a vital tool for impactful biochemical analysis.

Citing Articles

Deep Learning Predicts Non-Normal Transmission Distributions in High-Field Asymmetric Waveform Ion Mobility (FAIMS) Directly from Peptide Sequence.

McKetney J, Miller I, Hutton A, Sinitcyn P, Serrano L, Coon J Anal Chem. 2025; 97(4):2254-2263.

PMID: 39865577 PMC: 11800176. DOI: 10.1021/acs.analchem.4c05359.


LC-ESI-HRMS - lipidomics of phospholipids : Characterization of extraction, chromatography and detection parameters.

Rund K, Carpanedo L, Lauterbach R, Wermund T, West A, Wende L Anal Bioanal Chem. 2024; 416(4):925-944.

PMID: 38214704 PMC: 10800306. DOI: 10.1007/s00216-023-05080-0.


Data Processing of Product Ion Spectra: Redundancy of Product Ion Spectra of Small Molecules in Data-Dependent Acquisition Dataset.

Matsuda F Mass Spectrom (Tokyo). 2023; 12(1):A0138.

PMID: 38090113 PMC: 10713281. DOI: 10.5702/massspectrometry.A0138.


Data Processing of Product Ion Spectra: Quality Improvement by Averaging Multiple Similar Spectra of Small Molecules.

Matsuda F, Komori S, Yamada Y, Hara D, Okahashi N Mass Spectrom (Tokyo). 2023; 11(1):A0106.

PMID: 36713802 PMC: 9853114. DOI: 10.5702/massspectrometry.A0106.


Simulation of mass spectrometry-based proteomics data with Synthedia.

Leeming M, Ang C, Nie S, Varshney S, Williamson N Bioinform Adv. 2023; 3(1):vbac096.

PMID: 36698761 PMC: 9825309. DOI: 10.1093/bioadv/vbac096.


References
1.
Murphy R, Fiedler J, Hevko J . Analysis of nonvolatile lipids by mass spectrometry. Chem Rev. 2001; 101(2):479-526. DOI: 10.1021/cr9900883. View

2.
Riter L, Vitek O, Gooding K, Hodge B, Julian Jr R . Statistical design of experiments as a tool in mass spectrometry. J Mass Spectrom. 2005; 40(5):565-79. DOI: 10.1002/jms.871. View

3.
Makarov A, Denisov E, Lange O, Horning S . Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J Am Soc Mass Spectrom. 2006; 17(7):977-982. DOI: 10.1016/j.jasms.2006.03.006. View

4.
Lam H, Deutsch E, Eddes J, Eng J, Stein S, Aebersold R . Building consensus spectral libraries for peptide identification in proteomics. Nat Methods. 2008; 5(10):873-5. PMC: 2637392. DOI: 10.1038/nmeth.1254. View

5.
Schulz-Trieglaff O, Pfeifer N, Gropl C, Kohlbacher O, Reinert K . LC-MSsim--a simulation software for liquid chromatography mass spectrometry data. BMC Bioinformatics. 2008; 9:423. PMC: 2577660. DOI: 10.1186/1471-2105-9-423. View