» Articles » PMID: 31291106

Quasi-Resonance Fluorine-19 Signal Amplification by Reversible Exchange

Overview
Specialty Chemistry
Date 2019 Jul 11
PMID 31291106
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

We report on an extension of the quasi-resonance (QUASR) pulse sequence used for signal amplification by reversible exchange (SABRE), showing that we may target distantly -coupled F-spins. Polarization transfer from the parahydrogen-derived hydrides to the F nucleus is accomplished via weak five-bond -couplings using a shaped QUASR radio frequency pulse at a 0.05 T magnetic field. The net result is the direct generation of hyperpolarized F -magnetization, derived from the parahydrogen singlet order. An accumulation of F polarization on the free ligand is achieved with subsequent repetition of this pulse sequence. The hyperpolarized F signal exhibits clear dependence on the pulse length, irradiation frequency, and delay time in a manner similar to that reported for N QUASR-SABRE. Moreover, the hyperpolarized F signals of 3-F-N-pyridine and 3-F-N-pyridine isotopologues are similar, suggesting that (i) polarization transfer via QUASR-SABRE is irrespective of the nitrogen isotopologue and (ii) the presence or absence of the spin-1/2 N nucleus has no impact on the efficiency of QUASR-SABRE polarization transfer. Although optimization of polarization transfer efficiency to F ( ≈ 0.1%) was not the goal of this study, we show that high-field SABRE can be efficient and broadly applicable for direct hyperpolarization of F spins.

Citing Articles

N Hyperpolarization of Metronidazole Antibiotic in Aqueous Media Using Phase-Separated Signal Amplification by Reversible Exchange with Parahydrogen.

Sviyazov S, Burueva D, Chukanov N, Razumov I, Chekmenev E, Salnikov O J Phys Chem Lett. 2024; 15(20):5382-5389.

PMID: 38738984 PMC: 11151165. DOI: 10.1021/acs.jpclett.4c00875.


Multi-axis fields boost SABRE hyperpolarization.

Lindale J, Smith L, Mammen M, Eriksson S, Everhart L, Warren W Proc Natl Acad Sci U S A. 2024; 121(14):e2400066121.

PMID: 38536754 PMC: 10998558. DOI: 10.1073/pnas.2400066121.


C MRI of hyperpolarized pyruvate at 120 µT.

Kempf N, Korber R, Plaumann M, Pravdivtsev A, Engelmann J, Boldt J Sci Rep. 2024; 14(1):4468.

PMID: 38396023 PMC: 10891046. DOI: 10.1038/s41598-024-54770-x.


Coupling Constants of <1 Hz Enable C Hyperpolarization of Pyruvate via Reversible Exchange of Parahydrogen.

Assaf C, Gui X, Auer A, Duckett S, Hovener J, Pravdivtsev A J Phys Chem Lett. 2024; 15(5):1195-1203.

PMID: 38271215 PMC: 10860132. DOI: 10.1021/acs.jpclett.3c02980.


Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1-C]pyruvate in vivo.

MacCulloch K, Browning A, Bedoya D, McBride S, Abdulmojeed M, Dedesma C J Magn Reson Open. 2023; 16-17.

PMID: 38090022 PMC: 10715622. DOI: 10.1016/j.jmro.2023.100129.


References
1.
Chukanov N, Kidd B, Kovtunova L, Bukhtiyarov V, Shchepin R, Chekmenev E . A versatile synthetic route to the preparation of N heterocycles. J Labelled Comp Radiopharm. 2018; 62(13):892-902. PMC: 6559877. DOI: 10.1002/jlcr.3699. View

2.
Shchepin R, Jaigirdar L, Theis T, Warren W, Goodson B, Chekmenev E . Spin Relays Enable Efficient Long-Range Heteronuclear Signal Amplification By Reversible Exchange. J Phys Chem C Nanomater Interfaces. 2018; 121(51):28425-28434. PMC: 6017995. DOI: 10.1021/acs.jpcc.7b11485. View

3.
Barskiy D, Coffey A, Nikolaou P, Mikhaylov D, Goodson B, Branca R . NMR Hyperpolarization Techniques of Gases. Chemistry. 2016; 23(4):725-751. PMC: 5462469. DOI: 10.1002/chem.201603884. View

4.
Hovener J, Pravdivtsev A, Kidd B, Bowers C, Gloggler S, Kovtunov K . Parahydrogen-Based Hyperpolarization for Biomedicine. Angew Chem Int Ed Engl. 2018; 57(35):11140-11162. PMC: 6105405. DOI: 10.1002/anie.201711842. View

5.
Bales L, Kovtunov K, Barskiy D, Shchepin R, Coffey A, Kovtunova L . Aqueous, Heterogeneous Parahydrogen-Induced N Polarization. J Phys Chem C Nanomater Interfaces. 2017; 121(28):15304-15309. PMC: 5723423. DOI: 10.1021/acs.jpcc.7b05912. View