» Articles » PMID: 31287499

Expandable Human Cardiovascular Progenitors from Stem Cells for Regenerating Mouse Heart After Myocardial Infarction

Overview
Journal Cardiovasc Res
Date 2019 Jul 10
PMID 31287499
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Aims: Cardiovascular diseases caused by loss of functional cardiomyocytes (CMs) are a major cause of mortality and morbidity worldwide due in part to the low regenerative capacity of the adult human heart. Human pluripotent stem cell (hPSC)-derived cardiovascular progenitor cells (CPCs) are a potential cell source for cardiac repair. The aim of this study was to examine the impact of extensive remuscularization and coincident revascularization on cardiac remodelling and function in a mouse model of myocardial infarction (MI) by transplanting doxycycline (DOX)-inducible (Tet-On-MYC) hPSC-derived CPCs in vivo and inducing proliferation and cardiovascular differentiation in a drug-regulated manner.

Methods And Results: CPCs were injected firstly at a non-cardiac site in Matrigel suspension under the skin of immunocompromised mice to assess their commitment to the cardiovascular lineage and ability to self-renew or differentiate in vivo when instructed by systemically delivered factors including DOX and basic fibroblast growth factor (bFGF). CPCs in Matrigel were then injected intra-myocardially in mice subjected to MI to assess whether expandable CPCs could mediate cardiac repair. Transplanted CPCs expanded robustly both subcutis and in the myocardium using the same DOX/growth factor inducing regime. Upon withdrawal of these cell-renewal factors, CPCs differentiated with high efficiency at both sites into the major cardiac lineages including CMs, endothelial cells, and smooth muscle cells. After MI, engraftment of CPCs in the heart significantly reduced fibrosis in the infarcted area and prevented left ventricular remodelling, although cardiac function determined by magnetic resonance imaging was unaltered.

Conclusion: Replacement of large areas of muscle may be required to regenerate the heart of patients following MI. Our human/mouse model demonstrated that proliferating hPSC-CPCs could reduce infarct size and fibrosis resulting in formation of large grafts. Importantly, the results suggested that expanding transplanted cells in situ at the progenitor stage maybe be an effective alternative causing less tissue damage than injection of very large numbers of CMs.

Citing Articles

Model construction and clinical therapeutic potential of engineered cardiac organoids for cardiovascular diseases.

Wang Y, Hou Y, Hao T, Garcia-Contreras M, Li G, Cretoiu D Biomater Transl. 2025; 5(4):337-354.

PMID: 39872935 PMC: 11764187. DOI: 10.12336/biomatertransl.2024.04.002.


Partial Cell Fate Transitions to Promote Cardiac Regeneration.

Yang J Cells. 2024; 13(23).

PMID: 39682750 PMC: 11640292. DOI: 10.3390/cells13232002.


Cleistopholis patens root bark extract exerts cardioprotective effect against doxorubicin-induced myocardial toxicity in rats.

Ononiwu C, Joshua P, Amah C, Asomadu R, Okorigwe E, Nnemolisa C Lab Anim Res. 2024; 40(1):39.

PMID: 39551811 PMC: 11572060. DOI: 10.1186/s42826-024-00225-3.


YTHDC1 Mitigates Apoptosis in Bone Marrow Mesenchymal Stem Cells by Inhibiting and Augmenting Cardiac Function Following Myocardial Infarction.

Han W, Xiong W, Sun W, Liu W, Zhang Y, Li C Cell Transplant. 2024; 33:9636897241290910.

PMID: 39466658 PMC: 11528794. DOI: 10.1177/09636897241290910.


Functional enhancement of acute infracted heart by coinjection of autologous adipose-derived stem cells with matrigel.

Wang B, Wang M, Li Y, Shao M, Zhang D, Yan S Turk J Biol. 2023; 47(3):170-185.

PMID: 37529419 PMC: 10388030. DOI: 10.55730/1300-0152.2653.


References
1.
Villa Del Campo C, Claveria C, Sierra R, Torres M . Cell competition promotes phenotypically silent cardiomyocyte replacement in the mammalian heart. Cell Rep. 2014; 8(6):1741-1751. DOI: 10.1016/j.celrep.2014.08.005. View

2.
Chong J, Murry C . Cardiac regeneration using pluripotent stem cells--progression to large animal models. Stem Cell Res. 2014; 13(3 Pt B):654-65. PMC: 4253057. DOI: 10.1016/j.scr.2014.06.005. View

3.
Zhu W, Zhao M, Mattapally S, Chen S, Zhang J . CCND2 Overexpression Enhances the Regenerative Potency of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Remuscularization of Injured Ventricle. Circ Res. 2017; 122(1):88-96. PMC: 5756126. DOI: 10.1161/CIRCRESAHA.117.311504. View

4.
Reichman D, Park L, Man L, Redmond D, Chao K, Harvey R . Wnt inhibition promotes vascular specification of embryonic cardiac progenitors. Development. 2017; 145(1). PMC: 5825863. DOI: 10.1242/dev.159905. View

5.
Moens C, Stanton B, Parada L, Rossant J . Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus. Development. 1993; 119(2):485-99. DOI: 10.1242/dev.119.2.485. View