» Articles » PMID: 31285470

Multiple Pleomorphic Tetramers of Thermostable Direct Hemolysin from Grimontia Hollisae in Exerting Hemolysis and Membrane Binding

Overview
Journal Sci Rep
Specialty Science
Date 2019 Jul 10
PMID 31285470
Authors
Affiliations
Soon will be listed here.
Abstract

Oligomerization of protein into specific quaternary structures plays important biological functions, including regulation of gene expression, enzymes activity, and cell-cell interactions. Here, we report the determination of two crystal structures of the Grimontia hollisae (formally described as Vibrio hollisae) thermostable direct hemolysin (Gh-TDH), a pore-forming toxin. The toxin crystalized in the same space group of P222, but with two different crystal packing patterns, each revealing three consistent tetrameric oligomerization forms called Oligomer-I, -II, and -III. A central pore with comparable depth of ~50 Å but differing in shape and size was observed in all determined toxin tetrameric oligomers. A common motif of a toxin dimer was found in all determined structures, suggesting a plausible minimum functional unit within the tetrameric structure in cell membrane binding and possible hemolytic activity. Our results show that bacterial toxins may form a single or highly symmetric oligomerization state when exerting their biological functions. The dynamic nature of multiple symmetric oligomers formed upon release of the toxin may open a niche for bacteria survival in harsh living environments.

References
1.
Hinestrosa F, Madeira R, Bourbeau P . Severe gastroenteritis and hypovolemic shock caused by Grimontia (Vibrio) hollisae infection. J Clin Microbiol. 2007; 45(10):3462-3. PMC: 2045321. DOI: 10.1128/JCM.01205-07. View

2.
Takeda Y, Takeda T, Honda T, MIWATANI T . Inactivation of the biological activities of the thermostable direct hemolysin of Vibrio parahaemolyticus by ganglioside Gt1. Infect Immun. 1976; 14(1):1-5. PMC: 420835. DOI: 10.1128/iai.14.1.1-5.1976. View

3.
Laemmli U . Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259):680-5. DOI: 10.1038/227680a0. View

4.
Miyamoto Y, Obara Y, Nikkawa T, Yamai S, Kato T . Proceedings: Extraction, purification, and biophysico-chemical characteristics of a "Kanagawa phenomenon"-associated hemolytic factor of Vibrio parahaemolyticus. Jpn J Med Sci Biol. 1975; 28(1):87-90. View

5.
Anderluh G, Pungercar J, Krizaj I, Strukelj B, Gubensek F, Macek P . N-terminal truncation mutagenesis of equinatoxin II, a pore-forming protein from the sea anemone Actinia equina. Protein Eng. 1997; 10(7):751-5. DOI: 10.1093/protein/10.7.751. View