» Articles » PMID: 31246972

Pore-scale Hydrodynamics Influence the Spatial Evolution of Bacterial Biofilms in a Microfluidic Porous Network

Overview
Journal PLoS One
Date 2019 Jun 28
PMID 31246972
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Bacteria occupy heterogeneous environments, attaching and growing within pores in materials, living hosts, and matrices like soil. Systems that permit high-resolution visualization of dynamic bacterial processes within the physical confines of a realistic and tractable porous media environment are rare. Here we use microfluidics to replicate the grain shape and packing density of natural sands in a 2D platform to study the flow-induced spatial evolution of bacterial biofilms underground. We discover that initial bacterial dispersal and grain attachment is influenced by bacterial transport across pore space velocity gradients, a phenomenon otherwise known as rheotaxis. We find that gravity-driven flow conditions activate different bacterial cell-clustering phenotypes depending on the strain's ability to product extracellular polymeric substances (EPS). A wildtype, biofilm-producing bacteria formed compact, multicellular patches while an EPS-defective mutant displayed a linked-cell phenotype in the presence of flow. These phenotypes subsequently influenced the overall spatial distribution of cells across the porous media network as colonies grew and altered the fluid dynamics of their microenvironment.

Citing Articles

New Cyclam-Based Fe(III) Complexes Coatings Targeting Biofilms.

Carvalho F, Gomes L, Teixeira-Santos R, Carapeto A, Mergulhao F, Almada S Molecules. 2025; 30(4).

PMID: 40005227 PMC: 11858526. DOI: 10.3390/molecules30040917.


Microfluidics for studying the deep underground biosphere: from applications to fundamentals.

Morais S, Vidal E, Cario A, Marre S, Ranchou-Peyruse A FEMS Microbiol Ecol. 2024; 100(12).

PMID: 39544108 PMC: 11650873. DOI: 10.1093/femsec/fiae151.


Emerging sensing, imaging, and computational technologies to scale nano-to macroscale rhizosphere dynamics - Review and research perspectives.

Ahkami A, Qafoku O, Roose T, Mou Q, Lu Y, Cardon Z Soil Biol Biochem. 2024; 189.

PMID: 39238778 PMC: 11376622. DOI: 10.1016/j.soilbio.2023.109253.


Fungi and bacteria occupy distinct spatial niches within carious dentin.

Sulyanto R, Beall C, Ha K, Montesano J, Juang J, Dickson J PLoS Pathog. 2024; 20(5):e1011865.

PMID: 38805482 PMC: 11161102. DOI: 10.1371/journal.ppat.1011865.


The mechanism of biofilm detachment in porous medium under flow field.

Tang Y, Zhang Z, Tao C, Wang X Biomicrofluidics. 2024; 18(3):034103.

PMID: 38737754 PMC: 11080962. DOI: 10.1063/5.0203061.


References
1.
Shivanandan A, Radenovic A, Sbalzarini I . MosaicIA: an ImageJ/Fiji plugin for spatial pattern and interaction analysis. BMC Bioinformatics. 2013; 14:349. PMC: 4219334. DOI: 10.1186/1471-2105-14-349. View

2.
Valiei A, Kumar A, Mukherjee P, Liu Y, Thundat T . A web of streamers: biofilm formation in a porous microfluidic device. Lab Chip. 2012; 12(24):5133-7. DOI: 10.1039/c2lc40815e. View

3.
Boedicker J, Vincent M, Ismagilov R . Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew Chem Int Ed Engl. 2009; 48(32):5908-11. PMC: 2748941. DOI: 10.1002/anie.200901550. View

4.
Marcos , Fu H, Powers T, Stocker R . Bacterial rheotaxis. Proc Natl Acad Sci U S A. 2012; 109(13):4780-5. PMC: 3324032. DOI: 10.1073/pnas.1120955109. View

5.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T . Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9(7):676-82. PMC: 3855844. DOI: 10.1038/nmeth.2019. View