» Articles » PMID: 31244005

Selective and Sensocompatible Electrochemical Nitric Oxide Sensor with a Bilaminar Design

Overview
Journal ACS Sens
Specialty Biotechnology
Date 2019 Jun 28
PMID 31244005
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Macrophages mediate mammalian inflammation in part by the release of the gasotransmitter, nitric oxide (NO). Electrochemical methods represent the best means of direct, continuous measurement of NO, but monitoring continuous release from immunostimulated macrophages remains analytically challenging. Long release durations necessitate consistent sensor performance (i.e., sensitivity and selectivity for NO) in proteinaceous media. Herein, we describe the fabrication of an electrochemical sensor modified by an electropolymerized 5-amino-1-naphthol (poly(5A1N)) film in conjunction with a fluorinated xerogel topcoat. The unique combination of these membranes ensures selective detection of NO that is maintained over extended periods of use (>24 h) in biological media without performance deterioration. The hydrophobic xerogel topcoat protects the underlying NO-selective poly(5A1N) film from hydration-induced desorption. The bilaminar sensor is then readily adapted for measurement of the temporal NO-release profiles from immunostimulated macrophages.

Citing Articles

Electrochemical Detection of Gasotransmitters: Status and Roadmap.

Herrald A, Ambrogi E, Mirica K ACS Sens. 2024; 9(4):1682-1705.

PMID: 38593007 PMC: 11196117. DOI: 10.1021/acssensors.3c02529.


Graphene nanocomposites for real-time electrochemical sensing of nitric oxide in biological systems.

Tabish T, Zhu Y, Shukla S, Kadian S, Sangha G, Lygate C Appl Phys Rev. 2024; 10:041310.

PMID: 38229764 PMC: 7615530. DOI: 10.1063/5.0162640.


Planar carbon electrodes for real-time quantification of hydrogen sulfide release from cells.

Hall J, Taylor J, Bradshaw T, Schoenfisch M Sens Diagn. 2023; 2(1):203-211.

PMID: 36741248 PMC: 9850357. DOI: 10.1039/d2sd00179a.


New trends in enzyme-free electrochemical sensing of ROS/RNS. Application to live cell analysis.

Rojas D, Hernandez-Rodriguez J, Della Pelle F, Escarpa A, Compagnone D Mikrochim Acta. 2022; 189(3):102.

PMID: 35152341 DOI: 10.1007/s00604-022-05185-w.


Silica Xerogel Doped with Iron(III) as Sensor Material for Salicylhydroxamic Acid Determination in Urine.

Morosanova M, Kovalev V, Morosanova E Gels. 2021; 7(3).

PMID: 34563029 PMC: 8482224. DOI: 10.3390/gels7030143.


References
1.
Coneski P, Schoenfisch M . Nitric oxide release: part III. Measurement and reporting. Chem Soc Rev. 2012; 41(10):3753-8. PMC: 3341472. DOI: 10.1039/c2cs15271a. View

2.
Malinski T, Taha Z . Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature. 1992; 358(6388):676-8. DOI: 10.1038/358676a0. View

3.
Lee R, Efron D, Tantry U, Barbul A . Nitric oxide in the healing wound: a time-course study. J Surg Res. 2001; 101(1):104-8. DOI: 10.1006/jsre.2001.6261. View

4.
Ignarro L, Buga G, Wood K, Byrns R, Chaudhuri G . Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987; 84(24):9265-9. PMC: 299734. DOI: 10.1073/pnas.84.24.9265. View

5.
Paul D, Stenken J . A review of flux considerations for in vivo neurochemical measurements. Analyst. 2015; 140(11):3709-30. PMC: 5310531. DOI: 10.1039/c4an01898b. View