» Articles » PMID: 31229668

Natural ACE Inhibitory Peptides Discovery from Spirulina (Arthrospira Platensis) Strain C1

Overview
Journal Peptides
Specialty Biochemistry
Date 2019 Jun 24
PMID 31229668
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Bioactive peptides from natural sources are utilized as food supplements for disease prevention and are increasingly becoming targets for drug discovery due to their specificity, efficacy and the absence of undesirable side effects, among others. Hence, the 'SpirPep' platform was developed to facilitate the in silico-based bioactive peptide discovery of these highly sought-after biomolecules from Spirulina(Arthrospira platensis) and to select the protease (thermolysin) used for in vitro digestion. Analysis of the predicted and experimentally-derived peptides suggested that they were mainly involved in ACE inhibition; thus, an ACEi assay was used to study the ACE inhibitory activity of five candidate peptides (SpirPep1-5), chosen from common peptides with multifunctional bioactivity and 100% bioactive peptide coverage, originating from phycobiliproteins. Results showed that SpirPep1 inhibited the activity of ACE with IC of 1.748 mM and was non-toxic to fibroblasts of African green monkey kidney and human dermal skin. The molecular docking and MD simulation analysis revealed SpirPep1 had significantly lower binding scores than others and showed greater specificity to ACE. The non-bonded interaction energy of SpirPep1 and ACE was -883 kJ/mol. The SpirPep1 indirectly bound to ACE via the ACE substrate binding sites residues (D121, E123, S516, and S517) found in natural ACE inhibitory peptides (angiotensin II and bradykinin potentiating peptides). In addition, two unreported substrate binding sites including R124 and S219 were found. These results indicate that 'SpirPep' platform could increase the success rate for natural bioactive peptide discovery.

Citing Articles

Comprehensive Review of the Latest Investigations of the Health-Enhancing Effects of Selected Properties of and Microalgae on Skin.

Chwil M, Mihelic R, Matraszek-Gawron R, Terlecka P, Skoczylas M, Terlecki K Pharmaceuticals (Basel). 2024; 17(10).

PMID: 39458962 PMC: 11510008. DOI: 10.3390/ph17101321.


Spirulina/Arthrospira/Limnospira-Three Names of the Single Organism.

Sinetova M, Kupriyanova E, Los D Foods. 2024; 13(17).

PMID: 39272527 PMC: 11395459. DOI: 10.3390/foods13172762.


Investigation of the Elemental Contents, Functional and Nutraceutical Properties of Kefirs Enriched with Spirulina platensis, an Eco-friendly and Alternative Protein Source.

Terzioglu M, Edebali E, Bakirci I Biol Trace Elem Res. 2023; 202(6):2878-2890.

PMID: 37697135 DOI: 10.1007/s12011-023-03844-4.


Big Things, Small Packages: An Update on Microalgae as Sustainable Sources of Nutraceutical Peptides for Promoting Cardiovascular Health.

Ejike C, Ezeorba T, Ajah O, Udenigwe C Glob Chall. 2023; 7(5):2200162.

PMID: 37205928 PMC: 10190598. DOI: 10.1002/gch2.202200162.


Recent developments in the production and utilization of photosynthetic microorganisms for food applications.

Barone G, Cernava T, Ullmann J, Liu J, Lio E, Germann A Heliyon. 2023; 9(4):e14708.

PMID: 37151658 PMC: 10161259. DOI: 10.1016/j.heliyon.2023.e14708.