» Articles » PMID: 31226244

OptoPAD, a Closed-loop Optogenetics System to Study the Circuit Basis of Feeding Behaviors

Overview
Journal Elife
Specialty Biology
Date 2019 Jun 22
PMID 31226244
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

The regulation of feeding plays a key role in determining the fitness of animals through its impact on nutrition. Elucidating the circuit basis of feeding and related behaviors is an important goal in neuroscience. We recently used a system for closed-loop optogenetic manipulation of neurons contingent on the feeding behavior of to dissect the impact of a specific subset of taste neurons on yeast feeding. Here, we describe the development and validation of this system, which we term the optoPAD. We use the optoPAD to induce appetitive and aversive effects on feeding by activating or inhibiting gustatory neurons in closed-loop - effectively creating virtual taste realities. The use of optogenetics allowed us to vary the dynamics and probability of stimulation in single flies and assess the impact on feeding behavior quantitatively and with high throughput. These data demonstrate that the optoPAD is a powerful tool to dissect the circuit basis of feeding behavior, allowing the efficient implementation of sophisticated behavioral paradigms to study the mechanistic basis of animals' adaptation to dynamic environments.

Citing Articles

Exitron splicing of odor receptor genes in .

Shang X, Talross G, Carlson J Proc Natl Acad Sci U S A. 2024; 121(13):e2320277121.

PMID: 38507450 PMC: 10990081. DOI: 10.1073/pnas.2320277121.


Optimized design and in vivo application of optogenetically functionalized Drosophila dopamine receptors.

Zhou F, Tichy A, Imambocus B, Sakharwade S, Rodriguez Jimenez F, Gonzalez Martinez M Nat Commun. 2023; 14(1):8434.

PMID: 38114457 PMC: 10730509. DOI: 10.1038/s41467-023-43970-0.


Serotonergic control of feeding microstructure in .

Banu A, Gowda S, Salim S, Mohammad F Front Behav Neurosci. 2023; 16:1105579.

PMID: 36733453 PMC: 9887136. DOI: 10.3389/fnbeh.2022.1105579.


Selective integration of diverse taste inputs within a single taste modality.

Deere J, Sarkissian A, Yang M, Uttley H, Martinez Santana N, Nguyen L Elife. 2023; 12.

PMID: 36692370 PMC: 9873257. DOI: 10.7554/eLife.84856.


Complex representation of taste quality by second-order gustatory neurons in Drosophila.

Snell N, Fisher J, Hartmann G, Zolyomi B, Talay M, Barnea G Curr Biol. 2022; 32(17):3758-3772.e4.

PMID: 35973432 PMC: 9474709. DOI: 10.1016/j.cub.2022.07.048.


References
1.
Ro J, Harvanek Z, Pletcher S . FLIC: high-throughput, continuous analysis of feeding behaviors in Drosophila. PLoS One. 2014; 9(6):e101107. PMC: 4076220. DOI: 10.1371/journal.pone.0101107. View

2.
Ribeiro C, Dickson B . Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr Biol. 2010; 20(11):1000-5. DOI: 10.1016/j.cub.2010.03.061. View

3.
Walker S, Corrales-Carvajal V, Ribeiro C . Postmating Circuitry Modulates Salt Taste Processing to Increase Reproductive Output in Drosophila. Curr Biol. 2015; 25(20):2621-30. DOI: 10.1016/j.cub.2015.08.043. View

4.
Branson K, Robie A, Bender J, Perona P, Dickinson M . High-throughput ethomics in large groups of Drosophila. Nat Methods. 2009; 6(6):451-7. PMC: 2734963. DOI: 10.1038/nmeth.1328. View

5.
Thorne N, Chromey C, Bray S, Amrein H . Taste perception and coding in Drosophila. Curr Biol. 2004; 14(12):1065-79. DOI: 10.1016/j.cub.2004.05.019. View