» Articles » PMID: 31196146

Heart Failure Drug Proscillaridin A Targets MYC Overexpressing Leukemia Through Global Loss of Lysine Acetylation

Abstract

Background: Cardiac glycosides are approved for the treatment of heart failure as Na/K pump inhibitors. Their repurposing in oncology is currently investigated in preclinical and clinical studies. However, the identification of a specific cancer type defined by a molecular signature to design targeted clinical trials with cardiac glycosides remains to be characterized. Here, we demonstrate that cardiac glycoside proscillaridin A specifically targets MYC overexpressing leukemia cells and leukemia stem cells by causing MYC degradation, epigenetic reprogramming and leukemia differentiation through loss of lysine acetylation.

Methods: Proscillaridin A anticancer activity was investigated against a panel of human leukemia and solid tumor cell lines with different MYC expression levels, overexpression in vitro systems and leukemia stem cells. RNA-sequencing and differentiation studies were used to characterize transcriptional and phenotypic changes. Drug-induced epigenetic changes were studied by chromatin post-translational modification analysis, expression of chromatin regulators, chromatin immunoprecipitation, and mass-spectrometry.

Results: At a clinically relevant dose, proscillaridin A rapidly altered MYC protein half-life causing MYC degradation and growth inhibition. Transcriptomic profile of leukemic cells after treatment showed a downregulation of genes involved in MYC pathways, cell replication and an upregulation of hematopoietic differentiation genes. Functional studies confirmed cell cycle inhibition and the onset of leukemia differentiation even after drug removal. Proscillaridin A induced a significant loss of lysine acetylation in histone H3 (at lysine 9, 14, 18 and 27) and in non-histone proteins such as MYC itself, MYC target proteins, and a series of histone acetylation regulators. Global loss of acetylation correlated with the rapid downregulation of histone acetyltransferases. Importantly, proscillaridin A demonstrated anticancer activity against lymphoid and myeloid stem cell populations characterized by MYC overexpression.

Conclusion: Overall, these results strongly support the repurposing of proscillaridin A in MYC overexpressing leukemia.

Citing Articles

Semisupervised Contrastive Learning for Bioactivity Prediction Using Cell Painting Image Data.

Bushiri Pwesombo D, Beese C, Schmied C, Sun H J Chem Inf Model. 2025; 65(2):528-543.

PMID: 39761993 PMC: 11776044. DOI: 10.1021/acs.jcim.4c00835.


Cell Fate Dynamics Reconstruction Identifies TPT1 and PTPRZ1 Feedback Loops as Master Regulators of Differentiation in Pediatric Glioblastoma-Immune Cell Networks.

Uthamacumaran A Interdiscip Sci. 2024; 17(1):59-85.

PMID: 39420135 DOI: 10.1007/s12539-024-00657-4.


Identification and validation of CCL5 as a key gene in HIV infection and pulmonary arterial hypertension.

Yang M, Bi W, Zhang Z Front Cardiovasc Med. 2024; 11:1417701.

PMID: 39119185 PMC: 11306045. DOI: 10.3389/fcvm.2024.1417701.


The Marine Natural Compound Dragmacidin D Selectively Induces Apoptosis in Triple-Negative Breast Cancer Spheroids.

Guzman E, Peterson T, Wright A Mar Drugs. 2023; 21(12).

PMID: 38132962 PMC: 10871089. DOI: 10.3390/md21120642.


Proscillaridin A inhibits lung cancer cell growth and motility through downregulation of the EGFR-Src-associated pathway.

Tsai J, Weng C, Lai Y, Tsai M, Chen H, Chen J Am J Cancer Res. 2023; 13(11):5352-5367.

PMID: 38058797 PMC: 10695799.


References
1.
Kimura A, Horikoshi M . Tip60 acetylates six lysines of a specific class in core histones in vitro. Genes Cells. 1999; 3(12):789-800. DOI: 10.1046/j.1365-2443.1998.00229.x. View

2.
Felsher D, Bishop J . Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell. 1999; 4(2):199-207. DOI: 10.1016/s1097-2765(00)80367-6. View

3.
Bellavia D, Campese A, Vacca A, Gulino A, Screpanti I . Notch3, another Notch in T cell development. Semin Immunol. 2003; 15(2):107-12. DOI: 10.1016/s1044-5323(03)00007-1. View

4.
Frank S, Parisi T, Taubert S, Fernandez P, Fuchs M, Chan H . MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep. 2003; 4(6):575-80. PMC: 1319201. DOI: 10.1038/sj.embor.embor861. View

5.
Vervoorts J, Luscher-Firzlaff J, Rottmann S, Lilischkis R, Walsemann G, Dohmann K . Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep. 2003; 4(5):484-90. PMC: 1319176. DOI: 10.1038/sj.embor.embor821. View