» Articles » PMID: 31192348

Subcellular Compartments Interplay for Carbon and Nitrogen Allocation in Chromera Velia and Vitrella Brassicaformis

Overview
Date 2019 Jun 14
PMID 31192348
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Endosymbioses necessitate functional cooperation of cellular compartments to avoid pathway redundancy and streamline the control of biological processes. To gain insight into the metabolic compartmentation in chromerids, phototrophic relatives to apicomplexan parasites, we prepared a reference set of proteins probably localized to mitochondria, cytosol, and the plastid, taking advantage of available genomic and transcriptomic data. Training of prediction algorithms with the reference set now allows a genome-wide analysis of protein localization in Chromera velia and Vitrella brassicaformis. We confirm that the chromerid plastids house enzymatic pathways needed for their maintenance and photosynthetic activity, but for carbon and nitrogen allocation, metabolite exchange is necessary with the cytosol and mitochondria. This indeed suggests that the regulatory mechanisms operate in the cytosol to control carbon metabolism based on the availability of both light and nutrients. We discuss that this arrangement is largely shared with apicomplexans and dinoflagellates, possibly stemming from a common ancestral metabolic architecture, and supports the mixotrophy of the chromerid algae.

Citing Articles

New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates.

Novak Vanclova A, Nef C, Fussy Z, Vancl A, Liu F, Bowler C EMBO Rep. 2024; 25(4):1859-1885.

PMID: 38499810 PMC: 11014865. DOI: 10.1038/s44319-024-00103-y.


Organellar Evolution: A Path from Benefit to Dependence.

Obornik M Microorganisms. 2022; 10(1).

PMID: 35056571 PMC: 8781833. DOI: 10.3390/microorganisms10010122.


Using Diatom and Apicomplexan Models to Study the Heme Pathway of .

Richtova J, Sheiner L, Gruber A, Yang S, Koreny L, Striepen B Int J Mol Sci. 2021; 22(12).

PMID: 34204357 PMC: 8233740. DOI: 10.3390/ijms22126495.


The Cryptic Plastid of Defines a New Type of Nonphotosynthetic Plastid Organelle.

Fussy Z, Zahonova K, Tomcala A, Krajcovic J, Yurchenko V, Obornik M mSphere. 2020; 5(5).

PMID: 33087518 PMC: 7580956. DOI: 10.1128/mSphere.00675-20.


Fatty Acid Biosynthesis in Chromerids.

Tomcala A, Michalek J, Schneedorferova I, Fussy Z, Gruber A, Vancova M Biomolecules. 2020; 10(8).

PMID: 32722284 PMC: 7464705. DOI: 10.3390/biom10081102.


References
1.
Van Dingenen J, Blomme J, Gonzalez N, Inze D . Plants grow with a little help from their organelle friends. J Exp Bot. 2016; 67(22):6267-6281. DOI: 10.1093/jxb/erw399. View

2.
Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R . Steps towards an integrated view of nitrogen metabolism. J Exp Bot. 2002; 53(370):959-70. DOI: 10.1093/jexbot/53.370.959. View

3.
Panigrahi A, Ogata Y, Zikova A, Anupama A, Dalley R, Acestor N . A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics. 2008; 9(2):434-50. PMC: 2869593. DOI: 10.1002/pmic.200800477. View

4.
Jacot D, Waller R, Soldati-Favre D, MacPherson D, MacRae J . Apicomplexan Energy Metabolism: Carbon Source Promiscuity and the Quiescence Hyperbole. Trends Parasitol. 2015; 32(1):56-70. DOI: 10.1016/j.pt.2015.09.001. View

5.
Mallo N, Fellows J, Johnson C, Sheiner L . Protein Import into the Endosymbiotic Organelles of Apicomplexan Parasites. Genes (Basel). 2018; 9(8). PMC: 6115763. DOI: 10.3390/genes9080412. View