» Articles » PMID: 31174254

Progress in Mycotoxins Affecting Intestinal Mucosal Barrier Function

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2019 Jun 9
PMID 31174254
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Mycotoxins, which are widely found in feed ingredients and human food, can exert harmful effects on animals and pose a serious threat to human health. As the first barrier against external pollutants, the intestinal mucosa is protected by a mechanical barrier, chemical barrier, immune barrier, and biological barrier. Firstly, mycotoxins can disrupt the mechanical barrier function of the intestinal mucosa, by destroying the morphology and tissue integrity of the intestinal epithelium. Secondly, mycotoxins can cause changes in the composition of mucin monosaccharides and the expression of intestinal mucin, which in turn affects mucin function. Thirdly, mycotoxins can cause damage to the intestinal mucosal immune barrier function. Finally, the microbiotas of animals closely interact with ingested mycotoxins. Based on existing research, this article reviews the effects of mycotoxins on the intestinal mucosal barrier and its mechanisms.

Citing Articles

Exposure to Subclinical Doses of Fumonisins, Deoxynivalenol, and Zearalenone Affects Immune Response, Amino Acid Digestibility, and Intestinal Morphology in Broiler Chickens.

Shanmugasundaram R, Kappari L, Pilewar M, Jones M, Olukosi O, Pokoo-Aikins A Toxins (Basel). 2025; 17(1).

PMID: 39852969 PMC: 11769399. DOI: 10.3390/toxins17010016.


Early Biomarkers for Detecting Subclinical Exposure to Fumonisin B1, Deoxynivalenol, and Zearalenone in Broiler Chickens.

Kappari L, Applegate T, Glenn A, Bakre A, Shanmugasundaram R Toxins (Basel). 2025; 17(1).

PMID: 39852954 PMC: 11769279. DOI: 10.3390/toxins17010001.


Terpinen-4-ol Improves the Intestinal Barrier Function of the Colon in Immune-Stressed Weaning Piglets.

Yu L, Qiu G, Yu X, Zhao J, Liu J, Wang H Animals (Basel). 2025; 15(1.

PMID: 39794952 PMC: 11719020. DOI: 10.3390/ani15010009.


Effects of deoxynivalenol contaminated corn distiller's dried grains with solubles on growth performance, body composition, immunological response, and gastrointestinal health in young pullets.

Paneru D, Sharma M, Shi H, Goo D, Choppa V, Gyawali I Poult Sci. 2024; 104(1):104611.

PMID: 39675103 PMC: 11714707. DOI: 10.1016/j.psj.2024.104611.


Lauric acid reduces apoptosis by inhibiting FOXO3a-signaling in deoxynivalenol-treated IPEC-J2 cells.

Kim N, Lee S J Anim Sci Technol. 2024; 66(5):1010-1020.

PMID: 39398305 PMC: 11466732. DOI: 10.5187/jast.2023.e92.


References
1.
Gonzalez-Mariscal L, Tapia R, Chamorro D . Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta. 2007; 1778(3):729-56. DOI: 10.1016/j.bbamem.2007.08.018. View

2.
Akbari P, Braber S, Gremmels H, Koelink P, Verheijden K, Garssen J . Deoxynivalenol: a trigger for intestinal integrity breakdown. FASEB J. 2014; 28(6):2414-29. DOI: 10.1096/fj.13-238717. View

3.
Burel C, Tanguy M, Guerre P, Boilletot E, Cariolet R, Queguiner M . Effect of low dose of fumonisins on pig health: immune status, intestinal microbiota and sensitivity to Salmonella. Toxins (Basel). 2013; 5(4):841-64. PMC: 3705294. DOI: 10.3390/toxins5040841. View

4.
Han F, Zhang H, Xia X, Xiong H, Song D, Zong X . Porcine β-defensin 2 attenuates inflammation and mucosal lesions in dextran sodium sulfate-induced colitis. J Immunol. 2015; 194(4):1882-93. DOI: 10.4049/jimmunol.1402300. View

5.
Claus S, Guillou H, Ellero-Simatos S . The gut microbiota: a major player in the toxicity of environmental pollutants?. NPJ Biofilms Microbiomes. 2017; 2:16003. PMC: 5515271. DOI: 10.1038/npjbiofilms.2016.3. View