» Articles » PMID: 31162604

Discovering Sequence and Structure Landscapes in RNA Interaction Motifs

Overview
Specialty Biochemistry
Date 2019 Jun 5
PMID 31162604
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

RNA molecules are able to bind proteins, DNA and other small or long RNAs using information at primary, secondary or tertiary structure level. Recent techniques that use cross-linking and immunoprecipitation of RNAs can detect these interactions and, if followed by high-throughput sequencing, molecules can be analysed to find recurrent elements shared by interactors, such as sequence and/or structure motifs. Many tools are able to find sequence motifs from lists of target RNAs, while others focus on structure using different approaches to find specific interaction elements. In this work, we make a systematic analysis of RBP-RNA and RNA-RNA datasets to better characterize the interaction landscape with information about multi-motifs on the same RNAs. To achieve this goal, we updated our BEAM algorithm to combine both sequence and structure information to create pairs of patterns that model motifs of interaction. This algorithm was applied to several RNA binding proteins and ncRNAs interactors, confirming already known motifs and discovering new ones. This landscape analysis on interaction variability reflects the diversity of target recognition and underlines that often both primary and secondary structure are involved in molecular recognition.

Citing Articles

ALS-associated FUS mutation reshapes the RNA and protein composition of stress granules.

Mariani D, Setti A, Castagnetti F, Vitiello E, Stufera Mecarelli L, Di Timoteo G Nucleic Acids Res. 2024; 52(21):13269-13289.

PMID: 39494508 PMC: 11602144. DOI: 10.1093/nar/gkae942.


Human lncRNAs harbor conserved modules embedded in different sequence contexts.

Ballesio F, Pepe G, Ausiello G, Novelletto A, Helmer-Citterich M, Gherardini P Noncoding RNA Res. 2024; 9(4):1257-1270.

PMID: 39040814 PMC: 11261117. DOI: 10.1016/j.ncrna.2024.06.013.


Exploring the landscape of tools and resources for the analysis of long non-coding RNAs.

Ballarino M, Pepe G, Helmer-Citterich M, Palma A Comput Struct Biotechnol J. 2023; 21:4706-4716.

PMID: 37841333 PMC: 10568309. DOI: 10.1016/j.csbj.2023.09.041.


Prediction of RNA-protein interactions using a nucleotide language model.

Yamada K, Hamada M Bioinform Adv. 2023; 2(1):vbac023.

PMID: 36699410 PMC: 9710633. DOI: 10.1093/bioadv/vbac023.


Artificial intelligence methods enhance the discovery of RNA interactions.

Pepe G, Appierdo R, Carrino C, Ballesio F, Helmer-Citterich M, Gherardini P Front Mol Biosci. 2022; 9:1000205.

PMID: 36275611 PMC: 9585310. DOI: 10.3389/fmolb.2022.1000205.


References
1.
Sanford J, Wang X, Mort M, VanDuyn N, Cooper D, Mooney S . Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 2009; 19(3):381-94. PMC: 2661799. DOI: 10.1101/gr.082503.108. View

2.
Gardner P, Giegerich R . A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics. 2004; 5:140. PMC: 526219. DOI: 10.1186/1471-2105-5-140. View

3.
Seok H, Ham J, Jang E, Chi S . MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions. Mol Cells. 2016; 39(5):375-81. PMC: 4870184. DOI: 10.14348/molcells.2016.0013. View

4.
Ray D, Kazan H, Cook K, Weirauch M, Najafabadi H, Li X . A compendium of RNA-binding motifs for decoding gene regulation. Nature. 2013; 499(7457):172-7. PMC: 3929597. DOI: 10.1038/nature12311. View

5.
Yao Z, Weinberg Z, Ruzzo W . CMfinder--a covariance model based RNA motif finding algorithm. Bioinformatics. 2005; 22(4):445-52. DOI: 10.1093/bioinformatics/btk008. View