Pan X, Fang Y, Liu X, Guo X, Shen H
BMC Biol. 2025; 23(1):74.
PMID: 40069726
PMC: 11899677.
DOI: 10.1186/s12915-025-02182-2.
Wang Y, Zhu H, Wang Y, Yang Y, Huang Y, Zhang J
Bioinformatics. 2025; 41(1).
PMID: 39804669
PMC: 11783304.
DOI: 10.1093/bioinformatics/btaf018.
Azizian S, Cui J
BMC Bioinformatics. 2024; 25(1):381.
PMID: 39695955
PMC: 11656930.
DOI: 10.1186/s12859-024-05985-2.
Krautwurst S, Lamkiewicz K
Comput Struct Biotechnol J. 2024; 23:4036-4046.
PMID: 39610906
PMC: 11603007.
DOI: 10.1016/j.csbj.2024.11.015.
Miyake H, Kawaguchi R, Kiryu H
Bioinform Adv. 2024; 4(1):vbae144.
PMID: 39399375
PMC: 11471262.
DOI: 10.1093/bioadv/vbae144.
pyRBDome: a comprehensive computational platform for enhancing RNA-binding proteome data.
Chu L, Christopoulou N, McCaughan H, Winterbourne S, Cazzola D, Wang S
Life Sci Alliance. 2024; 7(10).
PMID: 39079742
PMC: 11289467.
DOI: 10.26508/lsa.202402787.
Comparative RNA Genomics.
Backofen R, Gorodkin J, Hofacker I, Stadler P
Methods Mol Biol. 2024; 2802:347-393.
PMID: 38819565
DOI: 10.1007/978-1-0716-3838-5_12.
Computational approaches and challenges in the analysis of circRNA data.
Digby B, Finn S, Broin P
BMC Genomics. 2024; 25(1):527.
PMID: 38807085
PMC: 11134749.
DOI: 10.1186/s12864-024-10420-0.
Deep Learning for Elucidating Modifications to RNA-Status and Challenges Ahead.
Rennie S
Genes (Basel). 2024; 15(5).
PMID: 38790258
PMC: 11121098.
DOI: 10.3390/genes15050629.
CircRNA identification and feature interpretability analysis.
Niu M, Wang C, Chen Y, Zou Q, Qi R, Xu L
BMC Biol. 2024; 22(1):44.
PMID: 38408987
PMC: 10898045.
DOI: 10.1186/s12915-023-01804-x.
DeepFusion: A deep bimodal information fusion network for unraveling protein-RNA interactions using in vivo RNA structures.
Qiao Y, Yang R, Liu Y, Chen J, Zhao L, Huo P
Comput Struct Biotechnol J. 2024; 23:617-625.
PMID: 38274994
PMC: 10808905.
DOI: 10.1016/j.csbj.2023.12.040.
RNA interaction format: a general data format for RNA interactions.
Schafer R, Rabsch D, Scholz G, Stadler P, Hess W, Backofen R
Bioinformatics. 2023; 39(11).
PMID: 37944046
PMC: 10640394.
DOI: 10.1093/bioinformatics/btad665.
Transfer Learning Allows Accurate RBP Target Site Prediction with Limited Sample Sizes.
Vaculik O, Chalupova E, Gresova K, Majtner T, Alexiou P
Biology (Basel). 2023; 12(10).
PMID: 37886986
PMC: 10604046.
DOI: 10.3390/biology12101276.
Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular conditions using HDRNet.
Zhu H, Yang Y, Wang Y, Wang F, Huang Y, Chang Y
Nat Commun. 2023; 14(1):6824.
PMID: 37884495
PMC: 10603054.
DOI: 10.1038/s41467-023-42547-1.
lhCLIP reveals the in vivo RNA-RNA interactions recognized by hnRNPK.
Hu Y, Hao T, Yu H, Miao W, Zheng Y, Tao W
PLoS Genet. 2023; 19(10):e1011006.
PMID: 37851698
PMC: 10635571.
DOI: 10.1371/journal.pgen.1011006.
KDeep: a new memory-efficient data extraction method for accurately predicting DNA/RNA transcription factor binding sites.
Akbari Rokn Abadi S, Tabatabaei S, Koohi S
J Transl Med. 2023; 21(1):727.
PMID: 37845681
PMC: 10580661.
DOI: 10.1186/s12967-023-04593-7.
A systematic benchmark of machine learning methods for protein-RNA interaction prediction.
Horlacher M, Cantini G, Hesse J, Schinke P, Goedert N, Londhe S
Brief Bioinform. 2023; 24(5).
PMID: 37635383
PMC: 10516373.
DOI: 10.1093/bib/bbad307.
Towards in silico CLIP-seq: predicting protein-RNA interaction via sequence-to-signal learning.
Horlacher M, Wagner N, Moyon L, Kuret K, Goedert N, Salvatore M
Genome Biol. 2023; 24(1):180.
PMID: 37542318
PMC: 10403857.
DOI: 10.1186/s13059-023-03015-7.
MncR: Late Integration Machine Learning Model for Classification of ncRNA Classes Using Sequence and Structural Encoding.
Dunkel H, Wehrmann H, Jensen L, Kuss A, Simm S
Int J Mol Sci. 2023; 24(10).
PMID: 37240230
PMC: 10218863.
DOI: 10.3390/ijms24108884.
PrismNet: predicting protein-RNA interaction using in vivo RNA structural information.
Xu Y, Zhu J, Huang W, Xu K, Yang R, Zhang Q
Nucleic Acids Res. 2023; 51(W1):W468-W477.
PMID: 37140045
PMC: 10320048.
DOI: 10.1093/nar/gkad353.