» Articles » PMID: 24451197

GraphProt: Modeling Binding Preferences of RNA-binding Proteins

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2014 Jan 24
PMID 24451197
Citations 125
Authors
Affiliations
Soon will be listed here.
Abstract

We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding preferences conform to the literature, and showcase the biological relevance and two applications of GraphProt models. First, estimated binding affinities correlate with experimental measurements. Second, predicted Ago2 targets display higher levels of expression upon Ago2 knockdown, whereas control targets do not. Computational binding models, such as those provided by GraphProt, are essential for predicting RBP binding sites and affinities in all tissues. GraphProt is freely available at http://www.bioinf.uni-freiburg.de/Software/GraphProt.

Citing Articles

RBPsuite 2.0: an updated RNA-protein binding site prediction suite with high coverage on species and proteins based on deep learning.

Pan X, Fang Y, Liu X, Guo X, Shen H BMC Biol. 2025; 23(1):74.

PMID: 40069726 PMC: 11899677. DOI: 10.1186/s12915-025-02182-2.


EnrichRBP: an automated and interpretable computational platform for predicting and analysing RNA-binding protein events.

Wang Y, Zhu H, Wang Y, Yang Y, Huang Y, Zhang J Bioinformatics. 2025; 41(1).

PMID: 39804669 PMC: 11783304. DOI: 10.1093/bioinformatics/btaf018.


DeepMiRBP: a hybrid model for predicting microRNA-protein interactions based on transfer learning and cosine similarity.

Azizian S, Cui J BMC Bioinformatics. 2024; 25(1):381.

PMID: 39695955 PMC: 11656930. DOI: 10.1186/s12859-024-05985-2.


RNA-protein interaction prediction without high-throughput data: An overview and benchmark of tools.

Krautwurst S, Lamkiewicz K Comput Struct Biotechnol J. 2024; 23:4036-4046.

PMID: 39610906 PMC: 11603007. DOI: 10.1016/j.csbj.2024.11.015.


RNAelem: an algorithm for discovering sequence-structure motifs in RNA bound by RNA-binding proteins.

Miyake H, Kawaguchi R, Kiryu H Bioinform Adv. 2024; 4(1):vbae144.

PMID: 39399375 PMC: 11471262. DOI: 10.1093/bioadv/vbae144.


References
1.
Corcoran D, Georgiev S, Mukherjee N, Gottwein E, Skalsky R, Keene J . PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol. 2011; 12(8):R79. PMC: 3302668. DOI: 10.1186/gb-2011-12-8-r79. View

2.
Steffen P, Voss B, Rehmsmeier M, Reeder J, Giegerich R . RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics. 2005; 22(4):500-3. DOI: 10.1093/bioinformatics/btk010. View

3.
Ilik I, Quinn J, Georgiev P, Tavares-Cadete F, Maticzka D, Toscano S . Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell. 2013; 51(2):156-73. PMC: 3804161. DOI: 10.1016/j.molcel.2013.07.001. View

4.
Kazan H, Ray D, Chan E, Hughes T, Morris Q . RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLoS Comput Biol. 2010; 6:e1000832. PMC: 2895634. DOI: 10.1371/journal.pcbi.1000832. View

5.
Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann B, Strein C . Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012; 149(6):1393-406. DOI: 10.1016/j.cell.2012.04.031. View