» Articles » PMID: 31145507

Covalency-Driven Preservation of Local Charge Densities in a Metal-to-Ligand Charge-Transfer Excited Iron Photosensitizer

Overview
Specialty Chemistry
Date 2019 May 31
PMID 31145507
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Covalency is found to even out charge separation after photo-oxidation of the metal center in the metal-to-ligand charge-transfer state of an iron photosensitizer. The σ-donation ability of the ligands compensates for the loss of iron 3d electronic charge, thereby upholding the initial metal charge density and preserving the local noble-gas configuration. These findings are enabled through element-specific and orbital-selective time-resolved X-ray absorption spectroscopy at the iron L-edge. Thus, valence orbital populations around the central metal are directly accessible. In conjunction with density functional theory we conclude that the picture of a localized charge-separation is inadequate. However, the unpaired spin density provides a suitable representation of the electron-hole pair associated with the electron-transfer process.

Citing Articles

Identification of metal-centered excited states in Cr(iii) complexes with time-resolved L-edge X-ray spectroscopy.

Ghodrati N, Eckert S, Fondell M, Scherz A, Fohlisch A, Van Kuiken B Chem Sci. 2025; .

PMID: 40078607 PMC: 11895842. DOI: 10.1039/d4sc07625g.


The Role of the Lowest Excited Triplet State in Defining the Rate of Photoaquation of Hexacyanometalates.

Mascarenhas E, Fondell M, Buchner R, Eckert S, Vaz da Cruz V, Fohlisch A J Phys Chem Lett. 2024; 15(1):241-247.

PMID: 38164541 PMC: 10788954. DOI: 10.1021/acs.jpclett.3c02775.


Resolving Femtosecond Solvent Reorganization Dynamics in an Iron Complex by Nonadiabatic Dynamics Simulations.

Zederkof D, Moller K, Nielsen M, Haldrup K, Gonzalez L, Mai S J Am Chem Soc. 2022; 144(28):12861-12873.

PMID: 35776920 PMC: 9305979. DOI: 10.1021/jacs.2c04505.


Following Metal-to-Ligand Charge-Transfer Dynamics with Ligand and Spin Specificity Using Femtosecond Resonant Inelastic X-ray Scattering at the Nitrogen K-Edge.

Jay R, Eckert S, Van Kuiken B, Ochmann M, Hantschmann M, Cordones A J Phys Chem Lett. 2021; 12(28):6676-6683.

PMID: 34260255 PMC: 8312498. DOI: 10.1021/acs.jpclett.1c01401.


Chemical control of competing electron transfer pathways in iron tetracyano-polypyridyl photosensitizers.

Kunnus K, Li L, Titus C, Lee S, Reinhard M, Koroidov S Chem Sci. 2021; 11(17):4360-4373.

PMID: 34122894 PMC: 8159445. DOI: 10.1039/c9sc06272f.


References
1.
Wasinger E, de Groot F, Hedman B, Hodgson K, Solomon E . L-edge X-ray absorption spectroscopy of non-heme iron sites: experimental determination of differential orbital covalency. J Am Chem Soc. 2003; 125(42):12894-906. DOI: 10.1021/ja034634s. View

2.
Hocking R, Wasinger E, de Groot F, Hodgson K, Hedman B, Solomon E . Fe L-edge XAS studies of K4[Fe(CN)6] and K3[Fe(CN)6]: a direct probe of back-bonding. J Am Chem Soc. 2006; 128(32):10442-51. DOI: 10.1021/ja061802i. View

3.
Jay R, Eckert S, Fondell M, Miedema P, Norell J, Pietzsch A . The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(ii) complexes. Phys Chem Chem Phys. 2018; 20(44):27745-27751. PMC: 6240897. DOI: 10.1039/c8cp04341h. View

4.
Gawelda W, Johnson M, de Groot F, Abela R, Bressler C, Chergui M . Electronic and molecular structure of photoexcited [Ru(II)(bpy)3]2+ probed by picosecond X-ray absorption spectroscopy. J Am Chem Soc. 2006; 128(15):5001-9. DOI: 10.1021/ja054932k. View

5.
Gawelda W, Cannizzo A, Pham V, van Mourik F, Bressler C, Chergui M . Ultrafast nonadiabatic dynamics of [Fe(II)(bpy)(3)](2+) in solution. J Am Chem Soc. 2007; 129(26):8199-206. DOI: 10.1021/ja070454x. View