» Articles » PMID: 31141982

Bacterial Outer Membrane Vesicles (OMVs)-based Dual Vaccine for Influenza A H1N1 Virus and MERS-CoV

Abstract

Vaccination is the most functional medical intervention to prophylactically control severe diseases caused by human-to-human or animal-to-human transmissible viral pathogens. Annually, seasonal influenza epidemics attack human populations leading to 290-650 thousand deaths/year worldwide. Recently, a novel Middle East Respiratory Syndrome Coronavirus emerged. Together, those two viruses present a significant public health burden in areas where they circulate. Herein, we generated a bacterial outer membrane vesicles (OMVs)-based vaccine presenting the antigenic stable chimeric fusion protein of the H1-type haemagglutinin (HA) of the pandemic influenza A virus (H1N1) strain from 2009 (H1N1pdm09) and the receptor binding domain (RBD) of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (OMVs-H1/RBD). Our results showed that the chimeric antigen could induce specific neutralizing antibodies against both strains leading to protection of immunized mice against H1N1pdm09 and efficient neutralization of MERS-CoV. This study demonstrate that OMVs-based vaccines presenting viral antigens provide a safe and reliable approach to protect against two different viral infections.

Citing Articles

Hybrid response to SARS-CoV-2 and C after an OMV-adjuvanted immunization in mice and their offspring.

Portilho A, Hermes Monteiro da Costa H, Grando Guereschi M, Prudencio C, De Gaspari E Hum Vaccin Immunother. 2024; 20(1):2346963.

PMID: 38745461 PMC: 11789737. DOI: 10.1080/21645515.2024.2346963.


Bacteria-derived extracellular vesicles: endogenous roles, therapeutic potentials and their biomimetics for the treatment and prevention of sepsis.

Effah C, Ding X, Drokow E, Li X, Tong R, Sun T Front Immunol. 2024; 15:1296061.

PMID: 38420121 PMC: 10899385. DOI: 10.3389/fimmu.2024.1296061.


Outer Membrane Vesicle Vaccine Platforms.

Micoli F, Adamo R, Nakakana U BioDrugs. 2023; 38(1):47-59.

PMID: 37796436 PMC: 10789842. DOI: 10.1007/s40259-023-00627-0.


The Two Faces of Bacterial Membrane Vesicles: Pathophysiological Roles and Therapeutic Opportunities.

Thapa H, Ebenberger S, Schild S Antibiotics (Basel). 2023; 12(6).

PMID: 37370364 PMC: 10295235. DOI: 10.3390/antibiotics12061045.


Outer membrane vesicles as versatile tools for therapeutic approaches.

Zingl F, Leitner D, Thapa H, Schild S Microlife. 2023; 2:uqab006.

PMID: 37223254 PMC: 10117751. DOI: 10.1093/femsml/uqab006.


References
1.
POTTER C . A history of influenza. J Appl Microbiol. 2001; 91(4):572-9. DOI: 10.1046/j.1365-2672.2001.01492.x. View

2.
Raetz C, Whitfield C . Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002; 71:635-700. PMC: 2569852. DOI: 10.1146/annurev.biochem.71.110601.135414. View

3.
Bahgat M, Kutkat M, Nasraa M, Mostafa A, Webby R, Bahgat I . Characterization of an avian influenza virus H5N1 Egyptian isolate. J Virol Methods. 2009; 159(2):244-50. DOI: 10.1016/j.jviromet.2009.04.008. View

4.
Neumann G, Noda T, Kawaoka Y . Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature. 2009; 459(7249):931-9. PMC: 2873852. DOI: 10.1038/nature08157. View

5.
Lessler J, Reich N, Cummings D, Nair H, Jordan H, Thompson N . Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school. N Engl J Med. 2010; 361(27):2628-36. DOI: 10.1056/NEJMoa0906089. View