Zawiasa A, Olejnik-Schmidt A
Genes (Basel). 2025; 16(1).
PMID: 39858597
PMC: 11765107.
DOI: 10.3390/genes16010050.
Ostroumova O, Efimova S
Antibiotics (Basel). 2023; 12(12).
PMID: 38136750
PMC: 10741038.
DOI: 10.3390/antibiotics12121716.
Unrath N, McCabe E, Macori G, Fanning S
Microorganisms. 2021; 9(9).
PMID: 34576750
PMC: 8464834.
DOI: 10.3390/microorganisms9091856.
Stolarek P, Bernat P, Szczerbiec D, Rozalski A
Int J Mol Sci. 2021; 22(16).
PMID: 34445157
PMC: 8395112.
DOI: 10.3390/ijms22168452.
van Gijtenbeek L, Eckhardt T, Herrera-Dominguez L, Brockmann E, Jensen K, Geppel A
Front Bioeng Biotechnol. 2021; 9:622835.
PMID: 33748081
PMC: 7965974.
DOI: 10.3389/fbioe.2021.622835.
Proteomic Adaptation of to Treatment with the Antimicrobial Peptide Nisin.
Maass S, Bartel J, Mucke P, Schluter R, Sura T, Zaschke-Kriesche J
Cells. 2021; 10(2).
PMID: 33670309
PMC: 7918085.
DOI: 10.3390/cells10020372.
Quantitative proteomic analysis reveals the influence of plantaricin BM-1 on metabolic pathways and peptidoglycan synthesis in Escherichia coli K12.
Wang H, Xie Y, Zhang H, Jin J, Zhang H
PLoS One. 2020; 15(4):e0231975.
PMID: 32324803
PMC: 7179913.
DOI: 10.1371/journal.pone.0231975.
Resistance of to Stress Conditions Encountered in Food and Food Processing Environments.
Bucur F, Grigore-Gurgu L, Crauwels P, Riedel C, Nicolau A
Front Microbiol. 2018; 9:2700.
PMID: 30555426
PMC: 6282059.
DOI: 10.3389/fmicb.2018.02700.
Contribution of Cell Surface Hydrophobicity in the Resistance of Staphylococcus aureus against Antimicrobial Agents.
Lather P, Mohanty A, Jha P, Garsa A
Biochem Res Int. 2016; 2016:1091290.
PMID: 26966577
PMC: 4761388.
DOI: 10.1155/2016/1091290.
Lantibiotic resistance.
Draper L, Cotter P, Hill C, Ross R
Microbiol Mol Biol Rev. 2015; 79(2):171-91.
PMID: 25787977
PMC: 4394878.
DOI: 10.1128/MMBR.00051-14.
Oligopolyphenylenevinylene-conjugated oligoelectrolyte membrane insertion molecules selectively disrupt cell envelopes of Gram-positive bacteria.
Hinks J, Poh W, Chu J, Loo J, Bazan G, Hancock L
Appl Environ Microbiol. 2015; 81(6):1949-58.
PMID: 25576607
PMC: 4345381.
DOI: 10.1128/AEM.03355-14.
Antibacterial efficacy of Nisin, Pediocin 34 and Enterocin FH99 against Listeria monocytogenes and cross resistance of its bacteriocin resistant variants to common food preservatives.
Kaur G, Singh T, Malik R
Braz J Microbiol. 2013; 44(1):63-71.
PMID: 24159285
PMC: 3804179.
DOI: 10.1590/S1517-83822013005000025.
Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.
Mastronicolis S, Berberi A, Diakogiannis I, Petrova E, Kiaki I, Baltzi T
Antonie Van Leeuwenhoek. 2010; 98(3):307-16.
PMID: 20379849
PMC: 2935972.
DOI: 10.1007/s10482-010-9439-z.
Coordinated regulation of cold-induced changes in fatty acids with cardiolipin and phosphatidylglycerol composition among phospholipid species for the food pathogen Listeria monocytogenes.
Mastronicolis S, Arvanitis N, Karaliota A, Magiatis P, Heropoulos G, Litos C
Appl Environ Microbiol. 2008; 74(14):4543-9.
PMID: 18502923
PMC: 2493165.
DOI: 10.1128/AEM.02041-07.
Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance.
Kramer N, van Hijum S, Knol J, Kok J, Kuipers O
Antimicrob Agents Chemother. 2006; 50(5):1753-61.
PMID: 16641446
PMC: 1472215.
DOI: 10.1128/AAC.50.5.1753-1761.2006.
Bioenergetic mechanism for nisin resistance, induced by the acid tolerance response of Listeria monocytogenes.
Bonnet M, Rafi M, Chikindas M, Montville T
Appl Environ Microbiol. 2006; 72(4):2556-63.
PMID: 16597957
PMC: 1449014.
DOI: 10.1128/AEM.72.4.2556-2563.2006.
pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression.
Gravesen A, Kallipolitis B, Holmstrom K, Hoiby P, Ramnath M, Knochel S
Appl Environ Microbiol. 2004; 70(3):1669-79.
PMID: 15006792
PMC: 368357.
DOI: 10.1128/AEM.70.3.1669-1679.2004.
Temperature- and surfactant-induced membrane modifications that alter Listeria monocytogenes nisin sensitivity by different mechanisms.
Li J, Chikindas M, Ludescher R, Montville T
Appl Environ Microbiol. 2002; 68(12):5904-10.
PMID: 12450809
PMC: 134382.
DOI: 10.1128/AEM.68.12.5904-5910.2002.
Antibacterial activities of nisin Z encapsulated in liposomes or produced in situ by mixed culture during cheddar cheese ripening.
Kheadr E, Lacroix C, Fliss I
Appl Environ Microbiol. 2002; 68(11):5607-19.
PMID: 12406756
PMC: 129882.
DOI: 10.1128/AEM.68.11.5607-5619.2002.
The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins.
Cotter P, Guinane C, Hill C
Antimicrob Agents Chemother. 2002; 46(9):2784-90.
PMID: 12183229
PMC: 127401.
DOI: 10.1128/AAC.46.9.2784-2790.2002.