» Articles » PMID: 31121262

Recombinant RquA Catalyzes the in Vivo Conversion of Ubiquinone to Rhodoquinone in Escherichia Coli and Saccharomyces Cerevisiae

Abstract

Terpenoid quinones are liposoluble redox-active compounds that serve as essential electron carriers and antioxidants. One such quinone, rhodoquinone (RQ), couples the respiratory electron transfer chain to the reduction of fumarate to facilitate anaerobic respiration. This mechanism allows RQ-synthesizing organisms to operate their respiratory chain using fumarate as a final electron acceptor. RQ biosynthesis is restricted to a handful of prokaryotic and eukaryotic organisms, and details of this biosynthetic pathway remain enigmatic. One gene, rquA, was discovered to be required for RQ biosynthesis in Rhodospirillum rubrum. However, the function of the gene product, RquA, has remained unclear. Here, using reverse genetics approaches, we demonstrate that RquA converts ubiquinone to RQ directly. We also demonstrate the first in vivo synthetic production of RQ in Escherichia coli and Saccharomyces cerevisiae, two organisms that do not natively produce RQ. These findings help clarify the complete RQ biosynthetic pathway in species which contain RquA homologs.

Citing Articles

Rhodoquinone carries electrons in the mammalian electron transport chain.

Valeros J, Jerome M, Tseyang T, Vo P, Do T, Fajardo Palomino D Cell. 2025; 188(4):1084-1099.e27.

PMID: 39909039 PMC: 11845293. DOI: 10.1016/j.cell.2024.12.007.


UbiN, a novel Rhodobacter capsulatus decarboxylative hydroxylase involved in aerobic ubiquinone biosynthesis.

Nagatani H, Mae Y, Konishi M, Matsuzaki M, Kita K, Daldal F FEBS Open Bio. 2023; 13(11):2081-2093.

PMID: 37716914 PMC: 10626278. DOI: 10.1002/2211-5463.13707.


-Adenosylmethionine: more than just a methyl donor.

Lee Y, Ren D, Jeon B, Liu H Nat Prod Rep. 2023; 40(9):1521-1549.

PMID: 36891755 PMC: 10491745. DOI: 10.1039/d2np00086e.


Microbial rhodoquinone biosynthesis proceeds via an atypical RquA-catalyzed amino transfer from S-adenosyl-L-methionine to ubiquinone.

Neupane T, Chambers L, Godfrey A, Monlux M, Jacobs E, Whitworth S Commun Chem. 2023; 5(1):89.

PMID: 36697674 PMC: 9814641. DOI: 10.1038/s42004-022-00711-6.


Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans.

Salomaki E, Terpis K, Rueckert S, Kotyk M, Kotykova Varadinova Z, cepicka I BMC Biol. 2021; 19(1):77.

PMID: 33863338 PMC: 8051059. DOI: 10.1186/s12915-021-01007-2.


References
1.
Kawamukai M . Biosynthesis and applications of prenylquinones. Biosci Biotechnol Biochem. 2018; 82(6):963-977. DOI: 10.1080/09168451.2018.1433020. View

2.
Marbois B, Xie L, Choi S, Hirano K, Hyman K, Clarke C . para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae. J Biol Chem. 2010; 285(36):27827-38. PMC: 2934650. DOI: 10.1074/jbc.M110.151894. View

3.
Allan C, Hill S, Morvaridi S, Saiki R, Johnson J, Liau W . A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae. Biochim Biophys Acta. 2012; 1831(4):776-791. PMC: 3909687. DOI: 10.1016/j.bbalip.2012.12.007. View

4.
Campbell A, Titus B, Kuenzi M, Rodriguez-Perez F, Brunsch A, Schroll M . Investigation of candidate genes involved in the rhodoquinone biosynthetic pathway in Rhodospirillum rubrum. PLoS One. 2019; 14(5):e0217281. PMC: 6529003. DOI: 10.1371/journal.pone.0217281. View

5.
Brajcich B, Iarocci A, Johnstone L, Morgan R, Lonjers Z, Hotchko M . Evidence that ubiquinone is a required intermediate for rhodoquinone biosynthesis in Rhodospirillum rubrum. J Bacteriol. 2009; 192(2):436-45. PMC: 2805321. DOI: 10.1128/JB.01040-09. View