» Articles » PMID: 31069269

Cell Type Phylogenetics Informs the Evolutionary Origin of Echinoderm Larval Skeletogenic Cell Identity

Overview
Journal Commun Biol
Specialty Biology
Date 2019 May 10
PMID 31069269
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The multiplicity of cell types comprising multicellular organisms begs the question as to how cell type identities evolve over time. Cell type phylogenetics informs this question by comparing gene expression of homologous cell types in distantly related taxa. We employ this approach to inform the identity of larval skeletogenic cells of echinoderms, a clade for which there are phylogenetically diverse datasets of spatial gene expression patterns. We determined ancestral spatial expression patterns of , and , key components of the skeletogenic gene regulatory network driving identity of the larval skeletogenic cell. Here we show ancestral state reconstructions of spatial gene expression of extant eleutherozoan echinoderms support homology and common ancestry of echinoderm larval skeletogenic cells. We propose larval skeletogenic cells arose in the stem lineage of eleutherozoans during a cell type duplication event that heterochronically activated adult skeletogenic cells in a topographically distinct tissue in early development.

Citing Articles

Shared regulatory function of non-genomic thyroid hormone signaling in echinoderm skeletogenesis.

Taylor E, Corsini M, Heyland A Evodevo. 2024; 15(1):10.

PMID: 39113104 PMC: 11304627. DOI: 10.1186/s13227-024-00226-2.


On the evolutionary developmental biology of the cell.

Babonis L Trends Genet. 2024; 40(10):822-833.

PMID: 38971670 PMC: 11619940. DOI: 10.1016/j.tig.2024.06.003.


A novel regulatory gene promotes novel cell fate by suppressing ancestral fate in the sea anemone .

Babonis L, Enjolras C, Ryan J, Martindale M Proc Natl Acad Sci U S A. 2022; 119(19):e2113701119.

PMID: 35500123 PMC: 9172639. DOI: 10.1073/pnas.2113701119.


Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record.

Mongiardino Koch N, Thompson J, Hiley A, McCowin M, Armstrong A, Coppard S Elife. 2022; 11.

PMID: 35315317 PMC: 8940180. DOI: 10.7554/eLife.72460.


Architecture and evolution of the -regulatory system of the echinoderm gene.

Khor J, Ettensohn C Elife. 2022; 11.

PMID: 35212624 PMC: 8903837. DOI: 10.7554/eLife.72834.


References
1.
Minemura K, Yamaguchi M, Minokawa T . Evolutionary modification of T-brain (tbr) expression patterns in sand dollar. Gene Expr Patterns. 2009; 9(7):468-74. DOI: 10.1016/j.gep.2009.07.008. View

2.
Smith A, Pisani D, Mackenzie-Dodds J, Stockley B, Webster B, Littlewood D . Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol Biol Evol. 2006; 23(10):1832-51. DOI: 10.1093/molbev/msl039. View

3.
McCauley B, Weideman E, Hinman V . A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. Dev Biol. 2009; 340(2):200-8. DOI: 10.1016/j.ydbio.2009.11.020. View

4.
Pagel M, Meade A, Barker D . Bayesian estimation of ancestral character states on phylogenies. Syst Biol. 2004; 53(5):673-84. DOI: 10.1080/10635150490522232. View

5.
Adomako-Ankomah A, Ettensohn C . Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo. Genesis. 2014; 52(3):158-72. DOI: 10.1002/dvg.22746. View