» Articles » PMID: 31044072

Lasing at Topological Edge States in a Photonic Crystal L3 Nanocavity Dimer Array

Overview
Journal Light Sci Appl
Publisher Springer Nature
Date 2019 May 3
PMID 31044072
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Topological photonics have provided new insights for the manipulation of light. Analogous to electrons in topological insulators, photons travelling through the surface of a topological photonic structure or the interface of two photonic structures with different topological phases are free from backscattering caused by structural imperfections or disorder. This exotic nature of the topological edge state (TES) is truly beneficial for nanophotonic devices that suffer from structural irregularities generated during device fabrication. Although various topological states and device concepts have been demonstrated in photonic systems, lasers based on a topological photonic crystal (PhC) cavity array with a wavelength-scale modal volume have not been explored. We investigated TESs in a PhC nanocavity array in the Su-Schrieffer-Heeger model. Upon optical excitation, the topological PhC cavity array realised using an InP-based multiple-quantum-well epilayer spontaneously exhibits lasing peaks at the topological edge and bulk states. TES characteristics, including the modal robustness caused by immunity to scattering, are confirmed from the emission spectra and near-field imaging and by theoretical simulations and calculations.

Citing Articles

Transmissible topological edge states based on Su-Schrieffer-Heeger photonic crystals with defect cavities.

Yan Q, Ma R, Lyu Q, Hu X, Gong Q Nanophotonics. 2024; 13(8):1397-1406.

PMID: 39679221 PMC: 11636502. DOI: 10.1515/nanoph-2023-0744.


Photonic crystal L3 cavity laser fabricated using maskless digital photolithography.

Kang M, Jin H, Jeon H Nanophotonics. 2024; 11(10):2283-2291.

PMID: 39678091 PMC: 11636002. DOI: 10.1515/nanoph-2022-0021.


Topological edge and corner states in coupled wave lattices in nonlinear polariton condensates.

Schneider T, Gao W, Zentgraf T, Schumacher S, Ma X Nanophotonics. 2024; 13(4):509-518.

PMID: 39635651 PMC: 11501762. DOI: 10.1515/nanoph-2023-0556.


Electrical tunable topological valley photonic crystals for on-chip optical communications in the telecom band.

Qi Z, Hu G, Deng C, Sun H, Sun Y, Li Y Nanophotonics. 2024; 11(18):4273-4285.

PMID: 39634541 PMC: 11501646. DOI: 10.1515/nanoph-2022-0169.


A large-scale single-mode array laser based on a topological edge mode.

Ishida N, Ota Y, Lin W, Byrnes T, Arakawa Y, Iwamoto S Nanophotonics. 2024; 11(9):2169-2181.

PMID: 39633954 PMC: 11501996. DOI: 10.1515/nanoph-2021-0608.


References
1.
Wu L, Hu X . Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material. Phys Rev Lett. 2015; 114(22):223901. DOI: 10.1103/PhysRevLett.114.223901. View

2.
Blanco-Redondo A, Andonegui I, Collins M, Harari G, Lumer Y, Rechtsman M . Topological Optical Waveguiding in Silicon and the Transition between Topological and Trivial Defect States. Phys Rev Lett. 2016; 116(16):163901. DOI: 10.1103/PhysRevLett.116.163901. View

3.
Bandres M, Wittek S, Harari G, Parto M, Ren J, Segev M . Topological insulator laser: Experiments. Science. 2018; 359(6381). DOI: 10.1126/science.aar4005. View

4.
Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H . Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat Commun. 2015; 6:6710. PMC: 4396359. DOI: 10.1038/ncomms7710. View

5.
Rechtsman M, Zeuner J, Plotnik Y, Lumer Y, Podolsky D, Dreisow F . Photonic Floquet topological insulators. Nature. 2013; 496(7444):196-200. DOI: 10.1038/nature12066. View