» Articles » PMID: 32864122

Nontrivial Coupling of Light into a Defect: the Interplay of Nonlinearity and Topology

Overview
Journal Light Sci Appl
Publisher Springer Nature
Date 2020 Sep 1
PMID 32864122
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The flourishing of topological photonics in the last decade was achieved mainly due to developments in linear topological photonic structures. However, when nonlinearity is introduced, many intriguing questions arise. For example, are there universal fingerprints of the underlying topology when modes are coupled by nonlinearity, and what can happen to topological invariants during nonlinear propagation? To explore these questions, we experimentally demonstrate nonlinearity-induced coupling of light into topologically protected edge states using a photonic platform and develop a general theoretical framework for interpreting the mode-coupling dynamics in nonlinear topological systems. Performed on laser-written photonic Su-Schrieffer-Heeger lattices, our experiments show the nonlinear coupling of light into a nontrivial edge or interface defect channel that is otherwise not permissible due to topological protection. Our theory explains all the observations well. Furthermore, we introduce the concepts of inherited and emergent nonlinear topological phenomena as well as a protocol capable of revealing the interplay of nonlinearity and topology. These concepts are applicable to other nonlinear topological systems, both in higher dimensions and beyond our photonic platform.

Citing Articles

Transition from the topological to the chaotic in the nonlinear Su-Schrieffer-Heeger model.

Sone K, Ezawa M, Gong Z, Sawada T, Yoshioka N, Sagawa T Nat Commun. 2025; 16(1):422.

PMID: 39881158 PMC: 11779912. DOI: 10.1038/s41467-024-55237-3.


Theory of nonlinear corner states in photonic fractal lattices.

Ren B, Kartashov Y, Maczewsky L, Kirsch M, Wang H, Szameit A Nanophotonics. 2024; 12(19):3829-3838.

PMID: 39678463 PMC: 11636470. DOI: 10.1515/nanoph-2023-0443.


Vortex solitons in topological disclination lattices.

Huang C, Shang C, Kartashov Y, Ye F Nanophotonics. 2024; 13(18):3495-3502.

PMID: 39634841 PMC: 11501678. DOI: 10.1515/nanoph-2023-0790.


Observation of nonlinearity-controlled switching of topological edge states.

Arkhipova A, Ivanov S, Zhuravitskii S, Skryabin N, Dyakonov I, Kalinkin A Nanophotonics. 2024; 11(16):3653-3661.

PMID: 39634447 PMC: 11501119. DOI: 10.1515/nanoph-2022-0290.


Observation of nonlinear fractal higher order topological insulator.

Zhong H, Kompanets V, Zhang Y, Kartashov Y, Cao M, Li Y Light Sci Appl. 2024; 13(1):264.

PMID: 39300062 PMC: 11413017. DOI: 10.1038/s41377-024-01611-1.


References
1.
Rechtsman M, Zeuner J, Plotnik Y, Lumer Y, Podolsky D, Dreisow F . Photonic Floquet topological insulators. Nature. 2013; 496(7444):196-200. DOI: 10.1038/nature12066. View

2.
Blanco-Redondo A, Bell B, Oren D, Eggleton B, Segev M . Topological protection of biphoton states. Science. 2018; 362(6414):568-571. DOI: 10.1126/science.aau4296. View

3.
Bahari B, Ndao A, Vallini F, El Amili A, Fainman Y, Kante B . Nonreciprocal lasing in topological cavities of arbitrary geometries. Science. 2017; 358(6363):636-640. DOI: 10.1126/science.aao4551. View

4.
Mittal S, Goldschmidt E, Hafezi M . A topological source of quantum light. Nature. 2018; 561(7724):502-506. DOI: 10.1038/s41586-018-0478-3. View

5.
Solnyshkov D, Bleu O, Teklu B, Malpuech G . Chirality of Topological Gap Solitons in Bosonic Dimer Chains. Phys Rev Lett. 2017; 118(2):023901. DOI: 10.1103/PhysRevLett.118.023901. View