» Articles » PMID: 31015609

Ectopic Expression of RAD52 and Dn53BP1 Improves Homology-directed Repair During CRISPR-Cas9 Genome Editing

Abstract

Gene disruption by clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) is highly efficient and relies on the error-prone non-homologous end-joining pathway. Conversely, precise gene editing requires homology-directed repair (HDR), which occurs at a lower frequency than non-homologous end-joining in mammalian cells. Here, by testing whether manipulation of DNA repair factors improves HDR efficacy, we show that transient ectopic co-expression of RAD52 and a dominant-negative form of tumour protein p53-binding protein 1 (dn53BP1) synergize to enable efficient HDR using a single-stranded oligonucleotide DNA donor template at multiple loci in human cells, including patient-derived induced pluripotent stem cells. Co-expression of RAD52 and dn53BP1 improves multiplexed HDR-mediated editing, whereas expression of RAD52 alone enhances HDR with Cas9 nickase. Our data show that the frequency of non-homologous end-joining-mediated double-strand break repair in the presence of these two factors is not suppressed and suggest that dn53BP1 competitively antagonizes 53BP1 to augment HDR in combination with RAD52. Importantly, co-expression of RAD52 and dn53BP1 does not alter Cas9 off-target activity. These findings support the use of RAD52 and dn53BP1 co-expression to overcome bottlenecks that limit HDR in precision genome editing.

Citing Articles

Promotion or inhibition? This is a question in gene editing.

Tsai L, Han R, Yang D, Chen Y, Zhang J, Xu J Mol Ther. 2025; 33(2):444-446.

PMID: 39842429 PMC: 11852673. DOI: 10.1016/j.ymthe.2025.01.014.


Optimizing cancer treatment: the synergistic potential of CAR-T cell therapy and CRISPR/Cas9.

Amiri M, Moaveni A, Zolbin M, Shademan B, Nourazarian A Front Immunol. 2024; 15:1462697.

PMID: 39582866 PMC: 11581867. DOI: 10.3389/fimmu.2024.1462697.


Mutant huntingtin impairs neurodevelopment in human brain organoids through CHCHD2-mediated neurometabolic failure.

Lisowski P, Lickfett S, Rybak-Wolf A, Menacho C, Le S, Pentimalli T Nat Commun. 2024; 15(1):7027.

PMID: 39174523 PMC: 11341898. DOI: 10.1038/s41467-024-51216-w.


Enhancing homology-directed repair efficiency with HDR-boosting modular ssDNA donor.

Jin Y, Zhang P, Liu L, Zhao X, Hu X, Liu S Nat Commun. 2024; 15(1):6843.

PMID: 39122671 PMC: 11315919. DOI: 10.1038/s41467-024-50788-x.


Engineering single-cycle MeV vector for CRISPR-Cas9 gene editing.

Rallabandi R, Sharp B, Majerus S, Royster A, Hoffer S, Ikeda M Mol Ther Methods Clin Dev. 2024; 32(3):101290.

PMID: 39070290 PMC: 11283025. DOI: 10.1016/j.omtm.2024.101290.


References
1.
Xie A, Hartlerode A, Stucki M, Odate S, Puget N, Kwok A . Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Mol Cell. 2007; 28(6):1045-57. PMC: 2275782. DOI: 10.1016/j.molcel.2007.12.005. View

2.
Ochs F, Somyajit K, Altmeyer M, Rask M, Lukas J, Lukas C . 53BP1 fosters fidelity of homology-directed DNA repair. Nat Struct Mol Biol. 2016; 23(8):714-21. DOI: 10.1038/nsmb.3251. View

3.
Storici F, Snipe J, Chan G, Gordenin D, Resnick M . Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing. Mol Cell Biol. 2006; 26(20):7645-57. PMC: 1636868. DOI: 10.1128/MCB.00672-06. View

4.
Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C . Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development. 2013; 140(24):4982-7. DOI: 10.1242/dev.099085. View

5.
Renaud J, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E . Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases. Cell Rep. 2016; 14(9):2263-2272. DOI: 10.1016/j.celrep.2016.02.018. View