» Articles » PMID: 31015402

Bacterial Chemotaxis in a Microfluidic T-maze Reveals Strong Phenotypic Heterogeneity in Chemotactic Sensitivity

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Apr 25
PMID 31015402
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Many microorganisms have evolved chemotactic strategies to exploit the microscale heterogeneity that frequently characterizes microbial habitats. Chemotaxis has been primarily studied as an average characteristic of a population, with little regard for variability among individuals. Here, we adopt a classic tool from animal ecology - the T-maze - and implement it at the microscale by using microfluidics to expose bacteria to a sequence of decisions, each consisting of migration up or down a chemical gradient. Single-cell observations of clonal Escherichia coli in the maze, coupled with a mathematical model, reveal that strong heterogeneity in the chemotactic sensitivity coefficient exists even within clonal populations of bacteria. A comparison of different potential sources of heterogeneity reveals that heterogeneity in the T-maze originates primarily from the chemotactic sensitivity coefficient, arising from a distribution of pathway gains. This heterogeneity may have a functional role, for example in the context of migratory bet-hedging strategies.

Citing Articles

Agency as an Inherent Property of Living Organisms.

Rosslenbroich B, Kummell S, Bembe B Biol Theory. 2024; 19(4):224-236.

PMID: 39703813 PMC: 11652585. DOI: 10.1007/s13752-024-00471-7.


Decoding physical principles of cell migration under controlled environment using microfluidics.

Suh Y, Li A, Pandey M, Nordmann C, Huang Y, Wu M Biophys Rev (Melville). 2024; 5(3):031302.

PMID: 39091432 PMC: 11290890. DOI: 10.1063/5.0199161.


Signal integration and adaptive sensory diversity tuning in Escherichia coli chemotaxis.

Moore J, Kamino K, Kottou R, Shimizu T, Emonet T Cell Syst. 2024; 15(7):628-638.e8.

PMID: 38981486 PMC: 11307269. DOI: 10.1016/j.cels.2024.06.003.


Multiscale Porosity Microfluidics to Study Bacterial Transport in Heterogeneous Chemical Landscapes.

Salek M, Carrara F, Zhou J, Stocker R, Jimenez-Martinez J Adv Sci (Weinh). 2024; 11(20):e2310121.

PMID: 38445967 PMC: 11132056. DOI: 10.1002/advs.202310121.


Microfluidic approaches in microbial ecology.

Ugolini G, Wang M, Secchi E, Pioli R, Ackermann M, Stocker R Lab Chip. 2024; 24(5):1394-1418.

PMID: 38344937 PMC: 10898419. DOI: 10.1039/d3lc00784g.


References
1.
Stocker R . Marine microbes see a sea of gradients. Science. 2012; 338(6107):628-33. DOI: 10.1126/science.1208929. View

2.
Jeon N, Baskaran H, Dertinger S, Whitesides G, Van De Water L, Toner M . Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol. 2002; 20(8):826-30. DOI: 10.1038/nbt712. View

3.
Masson J, Voisinne G, Wong-Ng J, Celani A, Vergassola M . Noninvasive inference of the molecular chemotactic response using bacterial trajectories. Proc Natl Acad Sci U S A. 2012; 109(5):1802-7. PMC: 3277171. DOI: 10.1073/pnas.1116772109. View

4.
Englert D, Manson M, Jayaraman A . Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl Environ Microbiol. 2009; 75(13):4557-64. PMC: 2704821. DOI: 10.1128/AEM.02952-08. View

5.
Blake W, Balazsi G, Kohanski M, Isaacs F, Murphy K, Kuang Y . Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell. 2006; 24(6):853-65. DOI: 10.1016/j.molcel.2006.11.003. View