Elucidating the Mechanism of the Structure-dependent Enzymatic Activity of Fe-N/C Oxidase Mimics
Overview
Affiliations
Herein, we develop an Fe-N/C-CNT nanomaterial with Fe-N units as a paradigm for excellent oxidase mimics by theoretical prediction and experimental implementation. The mechanism of the structure-dependent enzymatic activity is systematically investigated and elucidated from the perspective of the different configurations of M-N models (x = 0, 3, 4, and 5; M = Fe, Co, and Ni).
Zhu X, Chen C, Che D, Yan H Food Chem X. 2024; 23:101552.
PMID: 39022784 PMC: 467077. DOI: 10.1016/j.fochx.2024.101552.
Tiwari J, Kumar K, Safarkhani M, Umer M, Vilian A, Beloqui A Adv Sci (Weinh). 2024; 11(33):e2403197.
PMID: 38946671 PMC: 11580296. DOI: 10.1002/advs.202403197.
Carbon-based nanozymes: design, catalytic mechanisms, and environmental applications.
Zhuang Z, Yu Y, Dong S, Sun X, Mao L Anal Bioanal Chem. 2024; 416(27):5949-5964.
PMID: 38916795 DOI: 10.1007/s00216-024-05405-7.
Yang M, Wang J, Xue X, Jiang H RSC Adv. 2024; 14(20):13808-13816.
PMID: 38681841 PMC: 11046446. DOI: 10.1039/d4ra01953a.
Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes.
Yang L, Dong S, Gai S, Yang D, Ding H, Feng L Nanomicro Lett. 2023; 16(1):28.
PMID: 37989794 PMC: 10663430. DOI: 10.1007/s40820-023-01224-0.