» Articles » PMID: 30979881

Structure of the Plastic-degrading Ideonella Sakaiensis MHETase Bound to a Substrate

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Apr 14
PMID 30979881
Citations 98
Authors
Affiliations
Soon will be listed here.
Abstract

The extreme durability of polyethylene terephthalate (PET) debris has rendered it a long-term environmental burden. At the same time, current recycling efforts still lack sustainability. Two recently discovered bacterial enzymes that specifically degrade PET represent a promising solution. First, Ideonella sakaiensis PETase, a structurally well-characterized consensus α/β-hydrolase fold enzyme, converts PET to mono-(2-hydroxyethyl) terephthalate (MHET). MHETase, the second key enzyme, hydrolyzes MHET to the PET educts terephthalate and ethylene glycol. Here, we report the crystal structures of active ligand-free MHETase and MHETase bound to a nonhydrolyzable MHET analog. MHETase, which is reminiscent of feruloyl esterases, possesses a classic α/β-hydrolase domain and a lid domain conferring substrate specificity. In the light of structure-based mapping of the active site, activity assays, mutagenesis studies and a first structure-guided alteration of substrate specificity towards bis-(2-hydroxyethyl) terephthalate (BHET) reported here, we anticipate MHETase to be a valuable resource to further advance enzymatic plastic degradation.

Citing Articles

Improvement in the Thermal Stability of MHETase by Sequence and Structure-Guided Calculation.

Duan S, Chao T, Wu Y, Wei Z, Cao S Molecules. 2025; 30(5).

PMID: 40076213 PMC: 11902034. DOI: 10.3390/molecules30050988.


Current Understanding on the Heterogenous Expression of Plastic Depolymerising Enzymes in .

Wu S, Hooks D, Brightwell G Bioengineering (Basel). 2025; 12(1).

PMID: 39851342 PMC: 11760480. DOI: 10.3390/bioengineering12010068.


Evaluating cutinase from Fusarium oxysporum as a biocatalyst for the degradation of nine synthetic polymer.

de Oliveira M, Calandrini G, da Costa C, da Silva de Souza C, Alves C, Silva J Sci Rep. 2025; 15(1):2887.

PMID: 39843897 PMC: 11754424. DOI: 10.1038/s41598-024-84718-0.


Fine tuning enzyme activity assays for monitoring the enzymatic hydrolysis of PET.

Boros K, Nagy B, Tomoiaga R, Totos R, Tosa M, Paizs C Sci Rep. 2025; 15(1):1877.

PMID: 39805935 PMC: 11730307. DOI: 10.1038/s41598-024-84177-7.


Potential one-step strategy for PET degradation and PHB biosynthesis through co-cultivation of two engineered microorganisms.

Liu P, Zhang T, Zheng Y, Li Q, Su T, Qi Q Eng Microbiol. 2024; 1:100003.

PMID: 39629164 PMC: 11610943. DOI: 10.1016/j.engmic.2021.100003.


References
1.
Han X, Liu W, Huang J, Ma J, Zheng Y, Ko T . Structural insight into catalytic mechanism of PET hydrolase. Nat Commun. 2017; 8(1):2106. PMC: 5727383. DOI: 10.1038/s41467-017-02255-z. View

2.
Joo S, Cho I, Seo H, Son H, Sagong H, Shin T . Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat Commun. 2018; 9(1):382. PMC: 5785972. DOI: 10.1038/s41467-018-02881-1. View

3.
Thompson R, Moore C, Vom Saal F, Swan S . Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond B Biol Sci. 2009; 364(1526):2153-66. PMC: 2873021. DOI: 10.1098/rstb.2009.0053. View

4.
Li C, Wen A, Shen B, Lu J, Huang Y, Chang Y . FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnol. 2011; 11:92. PMC: 3207894. DOI: 10.1186/1472-6750-11-92. View

5.
Emsley P, Lohkamp B, Scott W, Cowtan K . Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):486-501. PMC: 2852313. DOI: 10.1107/S0907444910007493. View