» Articles » PMID: 30962586

Comparison of Three Congruent Patient-specific Cell Types for the Modelling of a Human Genetic Schwann-cell Disorder

Abstract

Patient-specific human-induced pluripotent stem cells (hiPSCs) hold great promise for the modelling of genetic disorders. However, these cells display wide intra- and interindividual variations in gene expression, which makes distinguishing true-positive and false-positive phenotypes challenging. Data from hiPSC phenotypes and human embryonic stem cells (hESCs) harbouring the same disease mutation are also lacking. Here, we report a comparison of the molecular, cellular and functional characteristics of three congruent patient-specific cell types-hiPSCs, hESCs and direct-lineage-converted cells-derived from currently available differentiation and direct-reprogramming technologies for use in the modelling of Charcot-Marie-Tooth 1A, a human genetic Schwann-cell disorder featuring a 1.4 Mb chromosomal duplication. We find that the chemokines C-X-C motif ligand chemokine-1 (CXCL1) and macrophage chemoattractant protein-1 (MCP1) are commonly upregulated in all three congruent models and in clinical patient samples. The development of congruent models of a single genetic disease using somatic cells from a common patient will facilitate the search for convergent phenotypes.

Citing Articles

From in vivo models to in vitro bioengineered neuromuscular junctions for the study of Charcot-Marie-Tooth disease.

Scherrer C, Loret C, Vedrenne N, Buckley C, Lia A, Kermene V J Tissue Eng. 2025; 16:20417314241310508.

PMID: 40078221 PMC: 11898049. DOI: 10.1177/20417314241310508.


Advances and challenges in modeling inherited peripheral neuropathies using iPSCs.

Van Lent J, Prior R, Perez Siles G, Cutrupi A, Kennerson M, Vangansewinkel T Exp Mol Med. 2024; 56(6):1348-1364.

PMID: 38825644 PMC: 11263568. DOI: 10.1038/s12276-024-01250-x.


hESC- and hiPSC-derived Schwann cells are molecularly comparable and functionally equivalent.

Moss K, Mi R, Kawaguchi R, Ehmsen J, Shi Q, Vargas P iScience. 2024; 27(6):109855.

PMID: 38770143 PMC: 11103364. DOI: 10.1016/j.isci.2024.109855.


SARS-CoV-2 infection exacerbates the cellular pathology of Parkinson's disease in human dopaminergic neurons and a mouse model.

Lee B, Choi H, Che Y, Ko M, Seong H, Jo M Cell Rep Med. 2024; 5(5):101570.

PMID: 38749422 PMC: 11148862. DOI: 10.1016/j.xcrm.2024.101570.


PMP22 duplication dysregulates lipid homeostasis and plasma membrane organization in developing human Schwann cells.

Prior R, Silva A, Vangansewinkel T, Idkowiak J, Tharkeshwar A, Hellings T Brain. 2024; 147(9):3113-3130.

PMID: 38743588 PMC: 11370802. DOI: 10.1093/brain/awae158.


References
1.
Monk K, Naylor S, Glenn T, Mercurio S, Perlin J, Dominguez C . A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science. 2009; 325(5946):1402-5. PMC: 2856697. DOI: 10.1126/science.1173474. View

2.
Lehmann H, Chen W, Mi R, Wang S, Liu Y, Rao M . Human Schwann cells retain essential phenotype characteristics after immortalization. Stem Cells Dev. 2011; 21(3):423-31. PMC: 3272243. DOI: 10.1089/scd.2010.0513. View

3.
Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y . Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature. 2013; 497(7448):211-6. PMC: 3756938. DOI: 10.1038/nature12143. View

4.
Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E . Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011; 127(3):701-21.e1-70. DOI: 10.1016/j.jaci.2010.11.050. View

5.
Tang W, Chen X, Liu H, Lv Q, Zou J, Shi Y . Expression of Nrf2 Promotes Schwann Cell-Mediated Sciatic Nerve Recovery in Diabetic Peripheral Neuropathy. Cell Physiol Biochem. 2018; 46(5):1879-1894. DOI: 10.1159/000489373. View