» Articles » PMID: 30919344

A Brief History of the β-Arrestins

Overview
Specialty Molecular Biology
Date 2019 Mar 29
PMID 30919344
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Arrestins have now been implicated in the actions of virtually every G protein-coupled receptor (GPCR) for which they have been examined. Originally discovered for their role in the turnoff of visual perception, their newly discovered pleotropic functions in the cellular and physiological actions of GPCRs not only illuminate new mechanisms of signal transduction but also offer new avenues for therapeutic utility. Below, in this introductory chapter, we provide a short historical description and synopsis of how arrestins conceptually became associated with the function of GPCRs.

Citing Articles

GPCR kinases differentially modulate biased signaling downstream of CXCR3 depending on their subcellular localization.

Gardner J, Eiger D, Hicks C, Choi I, Pham U, Chundi A Sci Signal. 2024; 17(823):eadd9139.

PMID: 38349966 PMC: 10927030. DOI: 10.1126/scisignal.add9139.


Distinct activation mechanisms of β-arrestin-1 revealed by F NMR spectroscopy.

Zhai R, Wang Z, Chai Z, Niu X, Li C, Jin C Nat Commun. 2023; 14(1):7865.

PMID: 38030602 PMC: 10686989. DOI: 10.1038/s41467-023-43694-1.


Structural details of a Class B GPCR-arrestin complex revealed by genetically encoded crosslinkers in living cells.

Aydin Y, Bottke T, Lam J, Ernicke S, Fortmann A, Tretbar M Nat Commun. 2023; 14(1):1151.

PMID: 36859440 PMC: 9977954. DOI: 10.1038/s41467-023-36797-2.


Interactions between β-arrestin proteins and the cytoskeletal system, and their relevance to neurodegenerative disorders.

Szenasi T, Turu G, Hunyady L Front Endocrinol (Lausanne). 2023; 14:957981.

PMID: 36843600 PMC: 9947276. DOI: 10.3389/fendo.2023.957981.


The incidence of candidate binding sites for β-arrestin in Drosophila neuropeptide GPCRs.

Taghert P PLoS One. 2022; 17(11):e0275410.

PMID: 36318573 PMC: 9624432. DOI: 10.1371/journal.pone.0275410.


References
1.
Bohn L, Lefkowitz R, Gainetdinov R, Peppel K, Caron M, Lin F . Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science. 2000; 286(5449):2495-8. DOI: 10.1126/science.286.5449.2495. View

2.
DeFea K, Zalevsky J, Thoma M, Dery O, Mullins R, Bunnett N . beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol. 2000; 148(6):1267-81. PMC: 2174299. DOI: 10.1083/jcb.148.6.1267. View

3.
Palczewski K, Kumasaka T, Hori T, Behnke C, Motoshima H, Fox B . Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000; 289(5480):739-45. DOI: 10.1126/science.289.5480.739. View

4.
Bohn L, Gainetdinov R, Lin F, Lefkowitz R, Caron M . Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature. 2000; 408(6813):720-3. DOI: 10.1038/35047086. View

5.
Wei H, Ahn S, Shenoy S, Karnik S, Hunyady L, Luttrell L . Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci U S A. 2003; 100(19):10782-7. PMC: 196880. DOI: 10.1073/pnas.1834556100. View