» Articles » PMID: 30918265

Systematic Benchmarking of Omics Computational Tools

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Mar 29
PMID 30918265
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

Computational omics methods packaged as software have become essential to modern biological research. The increasing dependence of scientists on these powerful software tools creates a need for systematic assessment of these methods, known as benchmarking. Adopting a standardized benchmarking practice could help researchers who use omics data to better leverage recent technological innovations. Our review summarizes benchmarking practices from 25 recent studies and discusses the challenges, advantages, and limitations of benchmarking across various domains of biology. We also propose principles that can make computational biology benchmarking studies more sustainable and reproducible, ultimately increasing the transparency of biomedical data and results.

Citing Articles

Genomic reproducibility in the bioinformatics era.

Baykal P, Labaj P, Markowetz F, Schriml L, Stekhoven D, Mangul S Genome Biol. 2024; 25(1):213.

PMID: 39123217 PMC: 11312195. DOI: 10.1186/s13059-024-03343-2.


Tackling neurodegeneration with omics: a path towards new targets and drugs.

Carraro C, Montgomery J, Klimmt J, Paquet D, Schultze J, Beyer M Front Mol Neurosci. 2024; 17:1414886.

PMID: 38952421 PMC: 11215216. DOI: 10.3389/fnmol.2024.1414886.


Packaging and containerization of computational methods.

Alser M, Lawlor B, Abdill R, Waymost S, Ayyala R, Rajkumar N Nat Protoc. 2024; 19(9):2529-2539.

PMID: 38565959 DOI: 10.1038/s41596-024-00986-0.


MAC-ErrorReads: machine learning-assisted classifier for filtering erroneous NGS reads.

Sami A, El-Metwally S, Rashad M BMC Bioinformatics. 2024; 25(1):61.

PMID: 38321434 PMC: 10848413. DOI: 10.1186/s12859-024-05681-1.


Challenges and best practices in omics benchmarking.

Brooks T, Lahens N, Mrcela A, Grant G Nat Rev Genet. 2024; 25(5):326-339.

PMID: 38216661 DOI: 10.1038/s41576-023-00679-6.


References
1.
Huntley R, Sawford T, Martin M, ODonovan C . Understanding how and why the Gene Ontology and its annotations evolve: the GO within UniProt. Gigascience. 2014; 3(1):4. PMC: 3995153. DOI: 10.1186/2047-217X-3-4. View

2.
Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L, Uhlen M . A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res. 2012; 40(20):10084-97. PMC: 3488244. DOI: 10.1093/nar/gks804. View

3.
Clark W, Radivojac P . Information-theoretic evaluation of predicted ontological annotations. Bioinformatics. 2013; 29(13):i53-61. PMC: 3694662. DOI: 10.1093/bioinformatics/btt228. View

4.
Thompson J, Linard B, Lecompte O, Poch O . A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS One. 2011; 6(3):e18093. PMC: 3069049. DOI: 10.1371/journal.pone.0018093. View

5.
. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol. 2014; 32(9):903-14. PMC: 4321899. DOI: 10.1038/nbt.2957. View