» Articles » PMID: 3091581

Molecular and Genetic Characterization of Lactose-metabolic Genes of Streptococcus Cremoris

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1986 Sep 1
PMID 3091581
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Lac+ plasmid DNA from Streptococcus cremoris H2 was subcloned with an Escherichia coli vector on a 3.5-kilobase-pair PstI-AvaI fragment. Genetic analysis of the cloned DNA was possible because linear Lac+ DNA fragments were productive in the S. sanguis transformation system. Complementation of S. sanguis Lac-mutants showed that the 3.5-kilobase-pair fragment included the structural gene for 6-phospho-beta-D-galactosidase and either enzyme II-lac or factor III-lac of the lactose-specific phosphoenolpyruvate-dependent phosphotransferase system. Expression of the S. cremoris-like 40,000-dalton 6-phospho-beta-D-galactosidase in S. sanguis Lac+ transformants, rather than the 52,000-dalton wild-type S. sanguis enzyme, demonstrated the occurrence of gene replacement and not gene repair. The evidence supports chromosomal integration as the mechanism by which S. sanguis Lac- recipients are converted to a Lac+ phenotype after transformation with Lac+ DNA. Southern blot data suggest that the Lac+ DNA does not reside on a transposon, but that integration always occurs within a specific HincII fragment of the recipient chromosome. Hybridization experiments demonstrate homology between the S. cremoris Lac+ DNA and cellular DNA from Lac+ strains of Streptococcus lactis, S. mutans, S. faecalis, and S. sanguis.

Citing Articles

Properties of Lactose Plasmid pLY101 in Lactobacillus casei.

Shimizu-Kadota M Appl Environ Microbiol. 1987; 53(12):2987-91.

PMID: 16347515 PMC: 204236. DOI: 10.1128/aem.53.12.2987-2991.1987.


Integration and gene replacement in the Lactococcus lactis lac operon: induction of a cryptic phospho-beta-glucosidase in LacG-deficient strains.

Simons G, Nijhuis M, de Vos W J Bacteriol. 1993; 175(16):5168-75.

PMID: 8349556 PMC: 204984. DOI: 10.1128/jb.175.16.5168-5175.1993.


Use of a novel mobilizable vector to inactivate the scrA gene of Streptococcus sobrinus by allelic replacement.

Buckley N, Lee L, Leblanc D J Bacteriol. 1995; 177(17):5028-34.

PMID: 7665480 PMC: 177280. DOI: 10.1128/jb.177.17.5028-5034.1995.


Nucleotide and deduced amino acid sequences of the Staphylococcus aureus phospho-beta-galactosidase gene.

Breidt Jr F, Stewart G Appl Environ Microbiol. 1987; 53(5):969-73.

PMID: 3111370 PMC: 203796. DOI: 10.1128/aem.53.5.969-973.1987.


Nucleotide sequence analysis of tetracycline resistance gene tetO from Streptococcus mutans DL5.

Leblanc D, Lee L, Titmas B, Smith C, Tenover F J Bacteriol. 1988; 170(8):3618-26.

PMID: 2841293 PMC: 211336. DOI: 10.1128/jb.170.8.3618-3626.1988.


References
1.
Ranhand J . Simple, inexpensive procedure for the disruption of bacteria. Appl Microbiol. 1974; 28(1):66-9. PMC: 186592. DOI: 10.1128/am.28.1.66-69.1974. View

2.
CITTI J, Sandine W, Elliker P . BETA-GALACTOSIDASE OF STREPTOCOCCUS LACTIS. J Bacteriol. 1965; 89:937-42. PMC: 277575. DOI: 10.1128/jb.89.4.937-942.1965. View

3.
Diezel W, Kopperschlager G, Hofmann E . An improved procedure for protein staining in polyacrylamide gels with a new type of Coomassie Brilliant Blue. Anal Biochem. 1972; 48(2):617-20. DOI: 10.1016/0003-2697(72)90117-0. View

4.
Southern E . Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975; 98(3):503-17. DOI: 10.1016/s0022-2836(75)80083-0. View

5.
Leblanc D, Hassell F . Transformation of Streptococcus sanguis Challis by plasmid deoxyribonucleic acid from Streptococcus faecalis. J Bacteriol. 1976; 128(1):347-55. PMC: 232861. DOI: 10.1128/jb.128.1.347-355.1976. View