» Articles » PMID: 30885983

Glycolytic Flux in is Dependent on RNA Polymerase III and Its Negative Regulator Maf1

Overview
Journal Biochem J
Specialty Biochemistry
Date 2019 Mar 20
PMID 30885983
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux.

Citing Articles

Mitochondrial Metabolism in the Spotlight: Maintaining Balanced RNAP III Activity Ensures Cellular Homeostasis.

Szatkowska R, Furmanek E, Kierzek A, Ludwig C, Adamczyk M Int J Mol Sci. 2023; 24(19).

PMID: 37834211 PMC: 10572830. DOI: 10.3390/ijms241914763.


Small noncoding RNA interactome capture reveals pervasive, carbon source-dependent tRNA engagement of yeast glycolytic enzymes.

Asencio C, Schwarzl T, Sahadevan S, Hentze M RNA. 2022; 29(3):330-345.

PMID: 36574981 PMC: 9945440. DOI: 10.1261/rna.079408.122.


Making Sense of "Nonsense" and More: Challenges and Opportunities in the Genetic Code Expansion, in the World of tRNA Modifications.

Lateef O, Akintubosun M, Olaoba O, Samson S, Adamczyk M Int J Mol Sci. 2022; 23(2).

PMID: 35055121 PMC: 8779196. DOI: 10.3390/ijms23020938.


RNA Polymerase III, Ageing and Longevity.

Kulaberoglu Y, Malik Y, Borland G, Selman C, Alic N, Tullet J Front Genet. 2021; 12:705122.

PMID: 34295356 PMC: 8290157. DOI: 10.3389/fgene.2021.705122.

References
1.
Becker-Kettern J, Paczia N, Conrotte J, Kay D, Guignard C, Jung P . Saccharomyces cerevisiae Forms D-2-Hydroxyglutarate and Couples Its Degradation to D-Lactate Formation via a Cytosolic Transhydrogenase. J Biol Chem. 2016; 291(12):6036-58. PMC: 4813551. DOI: 10.1074/jbc.M115.704494. View

2.
Kwapisz M, Smagowicz W, Oficjalska D, Hatin I, Rousset J, Zoladek T . Up-regulation of tRNA biosynthesis affects translational readthrough in maf1-delta mutant of Saccharomyces cerevisiae. Curr Genet. 2002; 42(3):147-52. DOI: 10.1007/s00294-002-0342-7. View

3.
Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B . Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 2009; 23(16):1929-43. PMC: 2725941. DOI: 10.1101/gad.532109. View

4.
Harismendy O, Gendrel C, Soularue P, Gidrol X, Sentenac A, Werner M . Genome-wide location of yeast RNA polymerase III transcription machinery. EMBO J. 2003; 22(18):4738-47. PMC: 212732. DOI: 10.1093/emboj/cdg466. View

5.
Cankorur-Cetinkaya A, Dereli E, Eraslan S, Karabekmez E, Dikicioglu D, Kirdar B . A novel strategy for selection and validation of reference genes in dynamic multidimensional experimental design in yeast. PLoS One. 2012; 7(6):e38351. PMC: 3366934. DOI: 10.1371/journal.pone.0038351. View