» Articles » PMID: 30883095

Characterization of a Trans-trans Carbonic Acid-Fluoride Complex by Infrared Action Spectroscopy in Helium Nanodroplets

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2019 Mar 19
PMID 30883095
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The high Lewis basicity and small ionic radius of fluoride promote the formation of strong ionic hydrogen bonds in the complexation of fluoride with protic molecules. Herein, we report that carbonic acid, a thermodynamically disfavored species that is challenging to investigate experimentally, forms a complex with fluoride in the gas phase. Intriguingly, this complex is highly stable and is observed in abundance upon nanoelectrospray ionization of an aqueous sodium fluoride solution in the presence of gas-phase carbon dioxide. We characterize the structure and properties of the carbonic acid-fluoride complex, F(HCO), and its deuterated isotopologue, F(DCO), by helium nanodroplet infrared action spectroscopy in the photon energy range of 390-2800 cm. The complex adopts a C symmetry structure with the carbonic acid in a planar trans-trans conformation and both OH groups forming ionic hydrogen bonds with the fluoride. Substantial vibrational anharmonic effects are observed in the infrared spectra, most notably a strong blue shift of the symmetric hydrogen stretching fundamental relative to predictions from the harmonic approximation or vibrational second-order perturbation theory. Ab initio thermostated ring-polymer molecular dynamics simulations indicate that this blue shift originates from strong coupling between the hydrogen stretching and bending vibrations, resulting in an effective weakening of the OH···F ionic hydrogen bonds.

Citing Articles

Neighboring Group Participation of Benzoyl Protecting Groups in C3- and C6-Fluorinated Glucose.

Greis K, Kirschbaum C, Fittolani G, Mucha E, Chang R, von Helden G European J Org Chem. 2022; 2022(15):e202200255.

PMID: 35915640 PMC: 9321577. DOI: 10.1002/ejoc.202200255.


Stabilizing the Exotic Carbonic Acid by Bisulfate Ion.

Lu H, Liu S, Li M, Xu B, Zhao L, Yang T Molecules. 2022; 27(1).

PMID: 35011240 PMC: 8746525. DOI: 10.3390/molecules27010008.


Helium Nanodroplet Infrared Action Spectroscopy of the Proton-Bound Dimer of Hydrogen Sulfate and Formate: Examining Nuclear Quantum Effects.

Thomas D, Taccone M, Ober K, Mucha E, Meijer G, von Helden G J Phys Chem A. 2021; 125(42):9279-9287.

PMID: 34652165 PMC: 8558860. DOI: 10.1021/acs.jpca.1c05705.


Chondroitin Sulfate Disaccharides in the Gas Phase: Differentiation and Conformational Constraints.

Lettow M, Greis K, Grabarics M, Horlebein J, Miller R, Meijer G J Phys Chem A. 2021; 125(20):4373-4379.

PMID: 33979516 PMC: 8279649. DOI: 10.1021/acs.jpca.1c02463.

References
1.
DePuy C . Understanding organic gas-phase anion molecule reactions. J Org Chem. 2002; 67(8):2393-401. DOI: 10.1021/jo0163593. View

2.
Robertson W, Diken E, Price E, Shin J, Johnson M . Spectroscopic determination of the OH- solvation shell in the OH-.(H2O)n clusters. Science. 2003; 299(5611):1367-72. DOI: 10.1126/science.1080695. View

3.
Abbott A, Capper G, Davies D, Rasheed R, Tambyrajah V . Novel solvent properties of choline chloride/urea mixtures. Chem Commun (Camb). 2003; (1):70-1. DOI: 10.1039/b210714g. View

4.
Robertson W, Johnson M . Molecular aspects of halide ion hydration: the cluster approach. Annu Rev Phys Chem. 2003; 54:173-213. DOI: 10.1146/annurev.physchem.54.011002.103801. View

5.
Abbott A, Boothby D, Capper G, Davies D, Rasheed R . Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc. 2004; 126(29):9142-7. DOI: 10.1021/ja048266j. View