» Articles » PMID: 30874795

MirtronDB: a Mirtron Knowledge Base

Overview
Journal Bioinformatics
Specialty Biology
Date 2019 Mar 16
PMID 30874795
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: Mirtrons arise from short introns with atypical cleavage by using the splicing mechanism. In the current literature, there is no repository centralizing and organizing the data available to the public. To fill this gap, we developed mirtronDB, the first knowledge database dedicated to mirtron, and it is available at http://mirtrondb.cp.utfpr.edu.br/. MirtronDB currently contains a total of 1407 mirtron precursors and 2426 mirtron mature sequences in 18 species.

Results: Through a user-friendly interface, users can now browse and search mirtrons by organism, organism group, type and name. MirtronDB is a specialized resource that provides free and user-friendly access to knowledge on mirtron data.

Availability And Implementation: MirtronDB is available at http://mirtrondb.cp.utfpr.edu.br/.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Citing Articles

tRNA, yRNA, and rRNA fragment excisions do not involve canonical microRNA biogenesis machinery.

Godang N, Nguyen A, DeMeis J, Paudel S, Campbell N, Barnes K MicroPubl Biol. 2024; 2024.

PMID: 39634108 PMC: 11615671. DOI: 10.17912/micropub.biology.001332.


A tailed mirtron promotes longevity in Drosophila.

Khanal S, de Cruz M, Strickland B, Mansfield K, Lai E, Flynt A Nucleic Acids Res. 2023; 52(3):1080-1089.

PMID: 38048325 PMC: 10853799. DOI: 10.1093/nar/gkad1158.


Transposable elements contribute to the spatiotemporal microRNA landscape in human brain development.

Playfoot C, Sheppard S, Planet E, Trono D RNA. 2022; 28(9):1157-1171.

PMID: 35732404 PMC: 9380744. DOI: 10.1261/rna.079100.122.


Predicting Drosha and Dicer Cleavage Sites with DeepMirCut.

Bell J, Hendrix D Front Mol Biosci. 2022; 8:799056.

PMID: 35141278 PMC: 8819831. DOI: 10.3389/fmolb.2021.799056.


MicroRNA Databases and Tools.

de Amorim T, Pedro D, Paschoal A Methods Mol Biol. 2021; 2257:131-166.

PMID: 34432277 DOI: 10.1007/978-1-0716-1170-8_7.


References
1.
Ruby J, Jan C, Bartel D . Intronic microRNA precursors that bypass Drosha processing. Nature. 2007; 448(7149):83-6. PMC: 2475599. DOI: 10.1038/nature05983. View

2.
Rorbach G, Unold O, Konopka B . Distinguishing mirtrons from canonical miRNAs with data exploration and machine learning methods. Sci Rep. 2018; 8(1):7560. PMC: 5953923. DOI: 10.1038/s41598-018-25578-3. View

3.
Budak H, Ani Akpinar B . Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics. 2015; 15(5):523-31. DOI: 10.1007/s10142-015-0451-2. View

4.
Okamura K, Hagen J, Duan H, Tyler D, Lai E . The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007; 130(1):89-100. PMC: 2729315. DOI: 10.1016/j.cell.2007.06.028. View

5.
Dai X, Zhuang Z, Zhao P . psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018; 46(W1):W49-W54. PMC: 6030838. DOI: 10.1093/nar/gky316. View