» Articles » PMID: 30872481

Substrate Binding Mode and Catalytic Mechanism of Human Heparan Sulfate D-glucuronyl C5 Epimerase

Abstract

Heparan sulfate (HS) is a linear, complex polysaccharide that modulates the biological activities of proteins through binding sites made by a series of Golgi-localized enzymes. Of these, glucuronyl C5-epimerase (Glce) catalyzes C5-epimerization of the HS component, d-glucuronic acid (GlcA), into l-iduronic acid (IdoA), which provides internal flexibility to the polymer and forges protein-binding sites to ensure polymer function. Here we report crystal structures of human Glce in the unbound state and of an inactive mutant, as assessed by real-time NMR spectroscopy, bound with a (GlcA-GlcNS) substrate or a (IdoA-GlcNS) product. Deep infiltration of the oligosaccharides into the active site cleft imposes a sharp kink within the central GlcNS-GlcA/IdoA-GlcNS trisaccharide motif. An extensive network of specific interactions illustrates the absolute requirement of -sulfate groups vicinal to the epimerization site for substrate binding. At the epimerization site, the GlcA/IdoA rings are highly constrained in two closely related boat conformations, highlighting ring-puckering signatures during catalysis. The structure-based mechanism involves the two invariant acid/base residues, Glu499 and Tyr578, poised on each side of the target uronic acid residue, thus allowing reversible abstraction and readdition of a proton at the C5 position through a neutral enol intermediate, reminiscent of mandelate racemase. These structures also shed light on a convergent mechanism of action between HS epimerases and lyases and provide molecular frameworks for the chemoenzymatic synthesis of heparin or HS analogs.

Citing Articles

Genetic variability in proteoglycan biosynthetic genes reveals new facets of heparan sulfate diversity.

Ouidja M, Biard D, Huynh M, Laffray X, Gomez-Henao W, Chantepie S Essays Biochem. 2024; 68(4):555-578.

PMID: 39630030 PMC: 11625870. DOI: 10.1042/EBC20240106.


Cell-surface d-glucuronyl C5-epimerase binds to porcine deltacoronavirus spike protein facilitating viral entry.

Xiao W, Chen C, Xia S, Li Z, Ding T, Zhou J J Virol. 2024; 98(8):e0088024.

PMID: 39078176 PMC: 11334431. DOI: 10.1128/jvi.00880-24.


Biosynthetic production of anticoagulant heparin polysaccharides through metabolic and sulfotransferases engineering strategies.

Deng J, Li Y, Wang Y, Cao Y, Xin S, Li X Nat Commun. 2024; 15(1):3755.

PMID: 38704385 PMC: 11069525. DOI: 10.1038/s41467-024-48193-5.


Exploring Heparan Sulfate Proteoglycans as Mediators of Human Mesenchymal Stem Cell Neurogenesis.

Petersen S, Okolicsanyi R, Haupt L Cell Mol Neurobiol. 2024; 44(1):30.

PMID: 38546765 PMC: 10978659. DOI: 10.1007/s10571-024-01463-8.


Structural and mechanistic characterization of bifunctional heparan sulfate N-deacetylase-N-sulfotransferase 1.

Mycroft-West C, Abdelkarim S, Duyvesteyn H, Gandhi N, Skidmore M, Owens R Nat Commun. 2024; 15(1):1326.

PMID: 38351061 PMC: 10864358. DOI: 10.1038/s41467-024-45419-4.


References
1.
Shaya D, Tocilj A, Li Y, Myette J, Venkataraman G, Sasisekharan R . Crystal structure of heparinase II from Pedobacter heparinus and its complex with a disaccharide product. J Biol Chem. 2006; 281(22):15525-35. DOI: 10.1074/jbc.M512055200. View

2.
Li J, Gong F, El Darwish K, Jalkanen M, Lindahl U . Characterization of the D-glucuronyl C5-epimerase involved in the biosynthesis of heparin and heparan sulfate. J Biol Chem. 2001; 276(23):20069-77. DOI: 10.1074/jbc.M011783200. View

3.
Lindahl U, Li J . Biosynthesis of heparin/heparan sulphate: mechanism of epimerization of glucuronyl C-5. Biochem J. 2000; 347 Pt 1:69-75. PMC: 1220932. View

4.
Han Y, Garron M, Kim H, Kim W, Zhang Z, Ryu K . Structural snapshots of heparin depolymerization by heparin lyase I. J Biol Chem. 2009; 284(49):34019-27. PMC: 2797172. DOI: 10.1074/jbc.M109.025338. View

5.
Qin Y, Ke J, Gu X, Fang J, Wang W, Cong Q . Structural and functional study of D-glucuronyl C5-epimerase. J Biol Chem. 2015; 290(8):4620-4630. PMC: 4335203. DOI: 10.1074/jbc.M114.602201. View