» Articles » PMID: 30867860

Thermal Sensing in Fluid at the Micro-nano-scales

Overview
Date 2019 Mar 15
PMID 30867860
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Temperature is one of the most fundamental parameters for the characterization of a physical system. With rapid development of lab-on-a-chip and biology at single cell level, a great demand has risen for the temperature sensors with high spatial, temporal, and thermal resolution. Nevertheless, measuring temperature in liquid environment is always a technical challenge. Various factors may affect the sensing results, such as the fabrication parameters of built-in sensors, thermal property of electrical insulating layer, and stability of fluorescent thermometers in liquid environment. In this review, we focused on different kinds of micro/nano-thermometers applied in the thermal sensing for microfluidic systems and cultured cells. We discussed the advantages and limitations of these thermometers in specific applications and the challenges and possible solutions for more accurate temperature measurements in further studies.

Citing Articles

Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges.

Tarn M, Shaw K, Foster P, West J, Johnston I, McCluskey D Biomicrofluidics. 2025; 19(1):011502.

PMID: 40041008 PMC: 11878220. DOI: 10.1063/5.0236911.


Temperature Sensing in Agarose/Silk Fibroin Translucent Hydrogels: Preparation of an Environment for Long-Term Observation.

Micheva M, Baluschev S, Landfester K Nanomaterials (Basel). 2025; 15(2).

PMID: 39852738 PMC: 11767501. DOI: 10.3390/nano15020123.


Thermal Probing Techniques for a Single Live Cell.

Yang N, Xu J, Wang F, Yang F, Han D, Xu S Sensors (Basel). 2022; 22(14).

PMID: 35890773 PMC: 9317922. DOI: 10.3390/s22145093.


Fluorescence Anisotropy as a Temperature-Sensing Molecular Probe Using Fluorescein.

Jain P, Aida T, Motosuke M Micromachines (Basel). 2021; 12(9).

PMID: 34577751 PMC: 8469510. DOI: 10.3390/mi12091109.


Thermophoretic Micron-Scale Devices: Practical Approach and Review.

Lee N, Wiegand S Entropy (Basel). 2020; 22(9).

PMID: 33286719 PMC: 7597233. DOI: 10.3390/e22090950.


References
1.
Iles A, Fortt R, de Mello A . Thermal optimisation of the Reimer-Tiemann reaction using thermochromic liquid crystals on a microfluidic reactor. Lab Chip. 2005; 5(5):540-4. DOI: 10.1039/b419081e. View

2.
Singh I, Hasday J . Fever, hyperthermia and the heat shock response. Int J Hyperthermia. 2013; 29(5):423-35. DOI: 10.3109/02656736.2013.808766. View

3.
Homma M, Takei Y, Murata A, Inoue T, Takeoka S . A ratiometric fluorescent molecular probe for visualization of mitochondrial temperature in living cells. Chem Commun (Camb). 2015; 51(28):6194-7. DOI: 10.1039/c4cc10349a. View

4.
Inomata N, Toda M, Ono T . Highly sensitive thermometer using a vacuum-packed Si resonator in a microfluidic chip for the thermal measurement of single cells. Lab Chip. 2016; 16(18):3597-603. DOI: 10.1039/c6lc00949b. View

5.
Monti M, Brandt L, Olsson H . Microcalorimetric investigation of cell metabolism in tumour cells from patients with non-Hodgkin lymphoma (NHL). Scand J Haematol. 1986; 36(4):353-7. DOI: 10.1111/j.1600-0609.1986.tb01749.x. View