» Articles » PMID: 30827221

Anisotropic Magnetic Hydrogels: Design, Structure and Mechanical Properties

Abstract

Anisotropy is an intrinsic feature of most of the human tissues (e.g. muscle, skin or cartilage). Because of this, there has been an intense effort in the search of methods for the induction of permanent anisotropy in hydrogels intended for biomedical applications. The dispersion of magnetic particles or beads in the hydrogel precursor solution prior to cross-linking, in combination with applied magnetic fields, which gives rise to columnar structures, is one of the most recently proposed approaches for this goal. We have gone even further and, in this paper, we show that it is possible to use magnetic particles as actuators for the alignment of the polymer chains in order to obtain anisotropic hydrogels. Furthermore, we characterize the microstructural arrangement and mechanical properties of the resulting hydrogels. This article is part of a theme issue 'Heterogeneous materials: metastable and non-ergodic internal structures'.

Citing Articles

Biomimetic Liquid Crystal-Modified Mesoporous Silica-Based Composite Hydrogel for Soft Tissue Repair.

Li X, Wan L, Zhu T, Li R, Zhang M, Lu H J Funct Biomater. 2023; 14(6).

PMID: 37367280 PMC: 10299385. DOI: 10.3390/jfb14060316.


Alginate Hydrogels Reinforced by Dehydration under Stress-Application to a Soft Magnetic Actuator.

Leon-Cecilla A, Vazquez-Perez F, Gila-Vilchez C, Alvarez de Cienfuegos L, Lopez-Lopez M Gels. 2023; 9(1).

PMID: 36661805 PMC: 9858607. DOI: 10.3390/gels9010039.


Magnetic hydrogels with ordered structure for biomedical applications.

Xue L, Sun J Front Chem. 2022; 10:1040492.

PMID: 36304746 PMC: 9592724. DOI: 10.3389/fchem.2022.1040492.


Magnetic Self-Healing Composites: Synthesis and Applications.

Cerdan K, Moya C, Van Puyvelde P, Bruylants G, Brancart J Molecules. 2022; 27(12).

PMID: 35744920 PMC: 9228312. DOI: 10.3390/molecules27123796.


Advances in Cellulose-Based Hydrogels for Biomedical Engineering: A Review Summary.

Zou P, Yao J, Cui Y, Zhao T, Che J, Yang M Gels. 2022; 8(6).

PMID: 35735708 PMC: 9222388. DOI: 10.3390/gels8060364.


References
1.
Kuo C, Ma P . Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001; 22(6):511-21. DOI: 10.1016/s0142-9612(00)00201-5. View

2.
Marguerie G, Pouit L, SUSCILLON M . Models proposed for the fibrinogen molecule and for the polymerization process. Thromb Res. 1975; 6(6):533-41. DOI: 10.1016/0049-3848(75)90065-1. View

3.
Poole A, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S . Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res. 2001; (391 Suppl):S26-33. DOI: 10.1097/00003086-200110001-00004. View

4.
Madison K . Barrier function of the skin: "la raison d'être" of the epidermis. J Invest Dermatol. 2003; 121(2):231-41. DOI: 10.1046/j.1523-1747.2003.12359.x. View

5.
Park S, Park S, Chung S, Pai K, Min B . Tissue-engineered cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Artif Organs. 2005; 29(10):838-45. DOI: 10.1111/j.1525-1594.2005.00137.x. View