» Articles » PMID: 30816110

Atomically Engineering Activation Sites Onto Metallic 1T-MoS Catalysts for Enhanced Electrochemical Hydrogen Evolution

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Mar 1
PMID 30816110
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Engineering catalytic sites at the atomic level provides an opportunity to understand the catalyst's active sites, which is vital to the development of improved catalysts. Here we show a reliable and tunable polyoxometalate template-based synthetic strategy to atomically engineer metal doping sites onto metallic 1T-MoS, using Anderson-type polyoxometalates as precursors. Benefiting from engineering nickel and oxygen atoms, the optimized electrocatalyst shows great enhancement in the hydrogen evolution reaction with a positive onset potential of ~ 0 V and a low overpotential of -46 mV in alkaline electrolyte, comparable to platinum-based catalysts. First-principles calculations reveal co-doping nickel and oxygen into 1T-MoS assists the process of water dissociation and hydrogen generation from their intermediate states. This research will expand on the ability to improve the activities of various catalysts by precisely engineering atomic activation sites to achieve significant electronic modulations and improve atomic utilization efficiencies.

Citing Articles

A synergistic coordination-reduction interface for electrochemical reductive extraction of uranium with low impurities from seawater.

Guo H, Hu E, Wang Y, Ou Z, Huang B, Lei J Nat Commun. 2025; 16(1):2012.

PMID: 40016212 PMC: 11868504. DOI: 10.1038/s41467-025-57113-0.


Enhancing electrocatalytic hydrogen evolution engineering unsaturated electronic structures in MoS.

Zhou Q, Hu H, Chen Z, Ren X, Ma D Chem Sci. 2025; 16(4):1597-1616.

PMID: 39776652 PMC: 11701923. DOI: 10.1039/d4sc07309f.


Platinum/Platinum Sulfide on Sulfur-Doped Carbon Nanosheets with Multiple Interfaces toward High Hydrogen Evolution Activity.

Zhang M, Su M, Zhang C, Gao F, Lu Q Molecules. 2024; 29(19).

PMID: 39407500 PMC: 11477529. DOI: 10.3390/molecules29194570.


Precious Metal Free Hydrogen Evolution Catalyst Design and Application.

Feidenhansl A, Regmi Y, Wei C, Xia D, Kibsgaard J, King L Chem Rev. 2024; 124(9):5617-5667.

PMID: 38661498 PMC: 11082907. DOI: 10.1021/acs.chemrev.3c00712.


Elucidating Local Structure and Positional Effect of Dopants in Colloidal Transition Metal Dichalcogenide Nanosheets for Catalytic Hydrogenolysis.

Farrell S, Khwaja M, Paredes I, Oyuela C, Clarke W, Osinski N J Phys Chem C Nanomater Interfaces. 2024; 128(11):4470-4482.

PMID: 38533242 PMC: 10961832. DOI: 10.1021/acs.jpcc.3c07408.


References
1.
Greeley J, Jaramillo T, Bonde J, Chorkendorff I, Norskov J . Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater. 2006; 5(11):909-13. DOI: 10.1038/nmat1752. View

2.
Jin Y, Wang H, Li J, Yue X, Han Y, Shen P . Porous MoO2 Nanosheets as Non-noble Bifunctional Electrocatalysts for Overall Water Splitting. Adv Mater. 2016; 28(19):3785-90. DOI: 10.1002/adma.201506314. View

3.
Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M . Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano. 2012; 6(8):7311-7. DOI: 10.1021/nn302422x. View

4.
Geng X, Sun W, Wu W, Chen B, Al-Hilo A, Benamara M . Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat Commun. 2016; 7:10672. PMC: 4749985. DOI: 10.1038/ncomms10672. View

5.
Xu Y, Kraft M, Xu R . Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chem Soc Rev. 2016; 45(11):3039-52. DOI: 10.1039/c5cs00729a. View