» Articles » PMID: 30795902

Defining the Functional Role of Na1.7 in Human Nociception

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2019 Feb 24
PMID 30795902
Citations 82
Authors
Affiliations
Soon will be listed here.
Abstract

Loss-of-function mutations in Na1.7 cause congenital insensitivity to pain (CIP); this voltage-gated sodium channel is therefore a key target for analgesic drug development. Utilizing a multi-modal approach, we investigated how Na1.7 mutations lead to human pain insensitivity. Skin biopsy and microneurography revealed an absence of C-fiber nociceptors in CIP patients, reflected in a reduced cortical response to capsaicin on fMRI. Epitope tagging of endogenous Na1.7 revealed the channel to be localized at the soma membrane, axon, axon terminals, and the nodes of Ranvier of induced pluripotent stem cell (iPSC) nociceptors. CIP patient-derived iPSC nociceptors exhibited an inability to properly respond to depolarizing stimuli, demonstrating that Na1.7 is a key regulator of excitability. Using this iPSC nociceptor platform, we found that some Na1.7 blockers undergoing clinical trials lack specificity. CIP, therefore, arises due to a profound loss of functional nociceptors, which is more pronounced than that reported in rodent models, or likely achievable following acute pharmacological blockade. VIDEO ABSTRACT.

Citing Articles

Small-Fiber Neuropathy: An Etiology-Oriented Review.

Furia A, Liguori R, Donadio V Brain Sci. 2025; 15(2).

PMID: 40002491 PMC: 11853085. DOI: 10.3390/brainsci15020158.


Small molecule-mediated targeted protein degradation of voltage-gated sodium channels involved in pain.

Chamessian A, Payne M, Gordon I, Zhou M, Gereau R bioRxiv. 2025; .

PMID: 39896637 PMC: 11785090. DOI: 10.1101/2025.01.21.634079.


A novel approach to completely alleviate peripheral neuropathic pain in human patients: insights from preclinical data.

Shehab S, Hamad M, Emerald B Front Neuroanat. 2025; 18():1523095.

PMID: 39839257 PMC: 11747518. DOI: 10.3389/fnana.2024.1523095.


Nociceptor sodium channels shape subthreshold phase, upstroke, and shoulder of action potentials.

Koster P, Leipold E, Tigerholm J, Maxion A, Namer B, Stiehl T J Gen Physiol. 2025; 157(2.

PMID: 39836077 PMC: 11748974. DOI: 10.1085/jgp.202313526.


Predicting 'pain genes': multi-modal data integration using probabilistic classifiers and interaction networks.

Zhao N, Bennett D, Baskozos G, Barry A Bioinform Adv. 2024; 4(1):vbae156.

PMID: 39526039 PMC: 11549022. DOI: 10.1093/bioadv/vbae156.


References
1.
Emery E, Habib A, Cox J, Nicholas A, Gribble F, Woods C . Novel SCN9A mutations underlying extreme pain phenotypes: unexpected electrophysiological and clinical phenotype correlations. J Neurosci. 2015; 35(20):7674-81. PMC: 4438121. DOI: 10.1523/JNEUROSCI.3935-14.2015. View

2.
Okell T, Chappell M, Kelly M, Jezzard P . Cerebral blood flow quantification using vessel-encoded arterial spin labeling. J Cereb Blood Flow Metab. 2013; 33(11):1716-24. PMC: 3824178. DOI: 10.1038/jcbfm.2013.129. View

3.
Salomons T, Iannetti G, Liang M, Wood J . The "Pain Matrix" in Pain-Free Individuals. JAMA Neurol. 2016; 73(6):755-6. DOI: 10.1001/jamaneurol.2016.0653. View

4.
Minett M, Nassar M, Clark A, Passmore G, Dickenson A, Wang F . Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat Commun. 2012; 3:791. PMC: 3337979. DOI: 10.1038/ncomms1795. View

5.
Goldberg Y, MacFarlane J, MacDonald M, Thompson J, Dube M, Mattice M . Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet. 2007; 71(4):311-9. DOI: 10.1111/j.1399-0004.2007.00790.x. View