» Articles » PMID: 30761719

On-Surface Synthesis of Ethynylene-Bridged Anthracene Polymers

Abstract

Engineering low-band-gap π-conjugated polymers is a growing area in basic and applied research. The main synthetic challenge lies in the solubility of the starting materials, which precludes advancements in the field. Here, we report an on-surface synthesis protocol to overcome such difficulties and produce poly(p-anthracene ethynylene) molecular wires on Au(111). To this aim, a quinoid anthracene precursor with =CBr moieties is deposited and annealed to 400 K, resulting in anthracene-based polymers. High-resolution nc-AFM measurements confirm the nature of the ethynylene-bridge bond between the anthracene moieties. Theoretical simulations illustrate the mechanism of the chemical reaction, highlighting three major steps: dehalogenation, diffusion of surface-stabilized carbenes, and homocoupling, which enables the formation of an ethynylene bridge. Our results introduce a novel chemical protocol to design π-conjugated polymers based on oligoacene precursors and pave new avenues for advancing the emerging field of on-surface synthesis.

Citing Articles

Competing pathways to aromaticity governed by amine dehydrogenation and metal-organic complexation in on-surface synthesis.

Lombana A, Chaunchaiyakul S, Chuzel O, Hagebaum-Reignier D, Parrain J, Bocquet F Chem Sci. 2025; 16(7):3198-3210.

PMID: 39840291 PMC: 11744327. DOI: 10.1039/d4sc07550a.


Visualizing stepwise evolution of carbon hybridization from sp to sp and to sp.

Xiong W, Zhang G, Bao D, Lu J, Gao L, Li Y Nat Commun. 2025; 16(1):690.

PMID: 39814741 PMC: 11735776. DOI: 10.1038/s41467-024-55719-4.


Room-temperature selective cyclodehydrogenation on Au(111) via radical addition of open-shell resonance structures.

Li D, Huang Z, Kang L, Wang B, Fu J, Wang Y Nat Commun. 2024; 15(1):9545.

PMID: 39500872 PMC: 11538238. DOI: 10.1038/s41467-024-53927-6.


Coronene-Based 2D Networks by On-Surface Skeletal Rearrangement of Sumanene Precursors.

Perez-Elvira E, Barragan A, Gallardo A, Santos J, Martin-Fuentes C, Lauwaet K Angew Chem Int Ed Engl. 2024; 64(2):e202414583.

PMID: 39193816 PMC: 11720390. DOI: 10.1002/anie.202414583.


Dimeric tetrabromo--quinodimethanes: synthesis and structural/electronic properties.

Vicent D, Perez-Escribano M, Cardenas-Valdivia A, Barragan A, Calbo J, Urgel J Chem Sci. 2023; 14(37):10112-10120.

PMID: 37772123 PMC: 10530488. DOI: 10.1039/d3sc01615c.


References
1.
Zuzak R, Dorel R, Krawiec M, Such B, Kolmer M, Szymonski M . Nonacene Generated by On-Surface Dehydrogenation. ACS Nano. 2017; 11(9):9321-9329. DOI: 10.1021/acsnano.7b04728. View

2.
Wiengarten A, Seufert K, Auwarter W, Ecija D, Diller K, Allegretti F . Surface-assisted dehydrogenative homocoupling of porphine molecules. J Am Chem Soc. 2014; 136(26):9346-54. DOI: 10.1021/ja501680n. View

3.
Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M, Paradinas M . Bottom-up synthesis of multifunctional nanoporous graphene. Science. 2018; 360(6385):199-203. DOI: 10.1126/science.aar2009. View

4.
Gross L, Schuler B, Pavlicek N, Fatayer S, Majzik Z, Moll N . Atomic Force Microscopy for Molecular Structure Elucidation. Angew Chem Int Ed Engl. 2018; 57(15):3888-3908. DOI: 10.1002/anie.201703509. View

5.
Kruger J, Eisenhut F, Alonso J, Lehmann T, Guitian E, Perez D . Imaging the electronic structure of on-surface generated hexacene. Chem Commun (Camb). 2016; 53(10):1583-1586. DOI: 10.1039/c6cc09327b. View