» Articles » PMID: 30755517

Herpes Simplex Virus 1 Lytic Infection Blocks MicroRNA (miRNA) Biogenesis at the Stage of Nuclear Export of Pre-miRNAs

Overview
Journal mBio
Specialty Microbiology
Date 2019 Feb 14
PMID 30755517
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Herpes simplex virus 1 (HSV-1) switches between two infection programs, productive ("lytic") and latent infection. Some HSV-1 microRNAs (miRNAs) have been hypothesized to help control this switch, and yet little is known about regulation of their expression. Using Northern blot analyses, we found that, despite inherent differences in biogenesis efficiency among six HSV-1 miRNAs, all six exhibited high pre-miRNA/miRNA ratios during lytic infection of different cell lines and, when detectable, in acutely infected mouse trigeminal ganglia. In contrast, considerably lower ratios were observed in latently infected ganglia and in cells transduced with lentiviral vectors expressing the miRNAs, suggesting that HSV-1 lytic infection blocks miRNA biogenesis. This phenomenon is not specific to viral miRNAs, as a host miRNA expressed from recombinant HSV-1 also exhibited high pre-miRNA/miRNA ratios late during lytic infection. The levels of most of the mature miRNAs remained stable during infection in the presence of actinomycin D, indicating that the high ratios are due to inefficient pre-miRNA conversion to miRNA. Cellular fractionation experiments showed that late (but not early) during infection, pre-miRNAs were enriched in the nucleus and depleted in the cytoplasm, indicating that nuclear export was blocked. A mutation eliminating ICP27 expression or addition of acyclovir reduced pre-miRNA/miRNA ratios, but mutations drastically reducing Us11 expression did not. Thus, HSV-1 lytic infection inhibits miRNA biogenesis at the step of nuclear export and does so in an ICP27- and viral DNA synthesis-dependent manner. This mechanism may benefit the virus by reducing expression of repressive miRNAs during lytic infection while permitting elevated expression during latency. Various mechanisms have been identified by which viruses target host small RNA biogenesis pathways to achieve optimal infection outcomes. Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen whose successful persistence in the host entails both productive ("lytic") and latent infection. Although many HSV-1 miRNAs have been discovered and some are thought to help control the lytic/latent switch, little is known about regulation of their biogenesis. By characterizing expression of both pre-miRNAs and mature miRNAs under various conditions, this study revealed striking differences in miRNA biogenesis between lytic and latent infection and uncovered a regulatory mechanism that blocks pre-miRNA nuclear export and is dependent on viral protein ICP27 and viral DNA synthesis. This mechanism represents a new virus-host interaction that could limit the repressive effects of HSV-1 miRNAs hypothesized to promote latency and may shed light on the regulation of miRNA nuclear export, which has been relatively unexplored.

Citing Articles

Neuronal miR-9 promotes HSV-1 epigenetic silencing and latency by repressing Oct-1 and Onecut family genes.

Deng Y, Lin Y, Chen S, Xiang Y, Chen H, Qi S Nat Commun. 2024; 15(1):1991.

PMID: 38443365 PMC: 10914762. DOI: 10.1038/s41467-024-46057-6.


Methods of miRNA delivery and possibilities of their application in neuro-oncology.

Gareev I, Beylerli O, Tamrazov R, Ilyasova T, Shumadalova A, Du W Noncoding RNA Res. 2023; 8(4):661-674.

PMID: 37860265 PMC: 10582311. DOI: 10.1016/j.ncrna.2023.10.002.


Genes Involved in miRNA Biogenesis Are Not Downregulated in SARS-CoV-2 Infection.

Garnier N, Sane F, Massara L, Soncin F, Gosset P, Hober D Viruses. 2023; 15(5).

PMID: 37243263 PMC: 10222706. DOI: 10.3390/v15051177.


Two-Color CRISPR Imaging Reveals Dynamics of Herpes Simplex Virus 1 Replication Compartments and Virus-Host Interactions.

Xu H, Wang J, Deng Y, Hou F, Fu Y, Chen S J Virol. 2022; 96(24):e0092022.

PMID: 36453882 PMC: 9769385. DOI: 10.1128/jvi.00920-22.


The Virus-Induced Upregulation of the miR-183/96/182 Cluster and the FoxO Family Protein Members Are Not Required for Efficient Replication of HSV-1.

Zubkovic A, Zarak I, Ratkaj I, Rokic F, Jekic M, Matesic M Viruses. 2022; 14(8).

PMID: 36016282 PMC: 9414244. DOI: 10.3390/v14081661.


References
1.
Jiang X, Brown D, Osorio N, Hsiang C, Li L, Chan L . A herpes simplex virus type 1 mutant disrupted for microRNA H2 with increased neurovirulence and rate of reactivation. J Neurovirol. 2015; 21(2):199-209. PMC: 4375036. DOI: 10.1007/s13365-015-0319-1. View

2.
Sandri-Goldin R . The many roles of the highly interactive HSV protein ICP27, a key regulator of infection. Future Microbiol. 2011; 6(11):1261-77. DOI: 10.2217/fmb.11.119. View

3.
Uprichard S, Knipe D . Herpes simplex ICP27 mutant viruses exhibit reduced expression of specific DNA replication genes. J Virol. 1996; 70(3):1969-80. PMC: 190026. DOI: 10.1128/JVI.70.3.1969-1980.1996. View

4.
Du T, Han Z, Zhou G, Zhou G, Roizman B . Patterns of accumulation of miRNAs encoded by herpes simplex virus during productive infection, latency, and on reactivation. Proc Natl Acad Sci U S A. 2014; 112(1):E49-55. PMC: 4291656. DOI: 10.1073/pnas.1422657112. View

5.
Edwards R, Marquitz A, Raab-Traub N . Epstein-Barr virus BART microRNAs are produced from a large intron prior to splicing. J Virol. 2008; 82(18):9094-106. PMC: 2546912. DOI: 10.1128/JVI.00785-08. View