» Articles » PMID: 35746686

MicroRNA Regulation of Human Herpesvirus Latency

Overview
Journal Viruses
Publisher MDPI
Specialty Microbiology
Date 2022 Jun 24
PMID 35746686
Authors
Affiliations
Soon will be listed here.
Abstract

Herpesviruses are ubiquitous human pathogens. After productive (lytic) infection, all human herpesviruses are able to establish life-long latent infection and reactivate from it. Latent infection entails suppression of viral replication, maintenance of the viral genome in infected cells, and the ability to reactivate. Most human herpesviruses encode microRNAs (miRNAs) that regulate these processes during latency. Meanwhile, cellular miRNAs are hijacked by herpesviruses to participate in these processes. The viral or cellular miRNAs either directly target viral transcripts or indirectly affect viral infection through host pathways. These findings shed light on the molecular determinants that control the lytic-latent switch and may lead to novel therapeutics targeting latent infection. We discuss the multiple mechanisms by which miRNAs regulate herpesvirus latency, focusing on the patterns in these mechanisms.

Citing Articles

Global MicroRNA Profiling of HSV-1 Infected Cornea Identifies miR-329 as a Novel Regulator of Virus Infection.

Sharma P, Naqvi R, Borase H, Kapoor D, Valverde A, Capistrano K Invest Ophthalmol Vis Sci. 2025; 66(2):61.

PMID: 39992671 PMC: 11878248. DOI: 10.1167/iovs.66.2.61.


Exploring microRNA-Mediated Immune Responses to Soil-Transmitted Helminth and Herpes Simplex Virus Type 2 Co-Infections.

Pillay R, Naidoo P, Mkhize-Kwitshana Z Diseases. 2025; 13(1).

PMID: 39851470 PMC: 11765296. DOI: 10.3390/diseases13010006.


Functions of the UL51 protein during the herpesvirus life cycle.

Liu X, Wang M, Cheng A, Yang Q, Tian B, Ou X Front Microbiol. 2024; 15:1457582.

PMID: 39252835 PMC: 11381400. DOI: 10.3389/fmicb.2024.1457582.


HSV-1 and Cellular miRNAs in CSF-Derived Exosomes as Diagnostically Relevant Biomarkers for Neuroinflammation.

Scheiber C, Klein H, Schneider J, Schulz T, Bechter K, Tumani H Cells. 2024; 13(14.

PMID: 39056790 PMC: 11275151. DOI: 10.3390/cells13141208.


Models of Herpes Simplex Virus Latency.

Canova P, Charron A, Leib D Viruses. 2024; 16(5).

PMID: 38793628 PMC: 11125678. DOI: 10.3390/v16050747.


References
1.
Samols M, Hu J, Skalsky R, Renne R . Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J Virol. 2005; 79(14):9301-5. PMC: 1168752. DOI: 10.1128/JVI.79.14.9301-9305.2005. View

2.
Zhang Q, Song X, Ma P, Lv L, Zhang Y, Deng J . Human Cytomegalovirus miR-US33as-5p Targets IFNAR1 to Achieve Immune Evasion During Both Lytic and Latent Infection. Front Immunol. 2021; 12:628364. PMC: 7973039. DOI: 10.3389/fimmu.2021.628364. View

3.
Lu Y, Qin Z, Wang J, Zheng X, Lu J, Zhang X . Epstein-Barr Virus miR-BART6-3p Inhibits the RIG-I Pathway. J Innate Immun. 2017; 9(6):574-586. DOI: 10.1159/000479749. View

4.
Grey F, Antoniewicz A, Allen E, Saugstad J, McShea A, Carrington J . Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol. 2005; 79(18):12095-9. PMC: 1212634. DOI: 10.1128/JVI.79.18.12095-12099.2005. View

5.
Du T, Han Z, Zhou G, Zhou G, Roizman B . Patterns of accumulation of miRNAs encoded by herpes simplex virus during productive infection, latency, and on reactivation. Proc Natl Acad Sci U S A. 2014; 112(1):E49-55. PMC: 4291656. DOI: 10.1073/pnas.1422657112. View