» Articles » PMID: 30748039

Substrate-dependent Cluster Density Dynamics of Corynebacterium Glutamicum Phosphotransferase System Permeases

Overview
Journal Mol Microbiol
Date 2019 Feb 13
PMID 30748039
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Many bacteria take up carbohydrates by membrane-integral sugar specific phosphoenolpyruvate-dependent carbohydrate:phosphotransferase systems (PTS). Although the PTS is centrally involved in regulation of carbon metabolism in different bacteria, little is known about localization and putative oligomerization of the permease subunits (EII). Here, we analyzed localization of the fructose specific PtsF and the glucose specific PtsG transporters, as well as the general components EI and HPr from Corynebacterium glutamicum using widefield and single molecule localization microscopy. PtsF and PtsG form membrane embedded clusters that localize in a punctate pattern. Size, number and fluorescence of the membrane clusters change upon presence or absence of the transported substrate, and a direct influence of EI and HPr was not observed. In presence of the transport substrate, EII clusters significantly increased in size. Photo-activated localization microscopy data revealed that, in presence of different carbon sources, the number of EII proteins per cluster remains the same, however, the density of these clusters reduces. Our work reveals a simple mechanism for efficient membrane occupancy regulation. Clusters of PTS EII transporters are densely packed in absence of a suitable substrate. In presence of a transported substrate, the EII proteins in individual clusters occupy larger membrane areas.

Citing Articles

Enhanced L-ornithine production from glucose and sucrose via manipulation of the fructose metabolic pathway in Corynebacterium glutamicum.

Nie L, Xu K, Zhong B, Wu X, Ding Z, Chen X Bioresour Bioprocess. 2024; 9(1):11.

PMID: 38647759 PMC: 10992749. DOI: 10.1186/s40643-022-00503-9.


Subcellular Dynamics of a Conserved Bacterial Polar Scaffold Protein.

Giacomelli G, Feddersen H, Peng F, Martins G, Grafemeyer M, Meyer F Genes (Basel). 2022; 13(2).

PMID: 35205323 PMC: 8872289. DOI: 10.3390/genes13020278.


Application of Corynebacterium glutamicum engineering display system in three generations of biorefinery.

Lin K, Han S, Zheng S Microb Cell Fact. 2022; 21(1):14.

PMID: 35090458 PMC: 8796525. DOI: 10.1186/s12934-022-01741-4.


Microbial Musings - May 2021.

Thomas G Microbiology (Reading). 2021; 167(5).

PMID: 34100696 PMC: 8290100. DOI: 10.1099/mic.0.001069.


Cryptic-Prophage-Encoded Small Protein DicB Protects from Phage Infection by Inhibiting Inner Membrane Receptor Proteins.

Ragunathan P, Vanderpool C J Bacteriol. 2019; 201(23).

PMID: 31527115 PMC: 6832061. DOI: 10.1128/JB.00475-19.


References
1.
Lux R, Jahreis K, Bettenbrock K, PARKINSON J, Lengeler J . Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc Natl Acad Sci U S A. 1995; 92(25):11583-7. PMC: 40446. DOI: 10.1073/pnas.92.25.11583. View

2.
Rohwer J, Postma P, Kholodenko B, Westerhoff H . Implications of macromolecular crowding for signal transduction and metabolite channeling. Proc Natl Acad Sci U S A. 1998; 95(18):10547-52. PMC: 27931. DOI: 10.1073/pnas.95.18.10547. View

3.
Parche S, Burkovski A, Sprenger G, Weil B, Kramer R, Titgemeyer F . Corynebacterium glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol. 2001; 3(3):423-8. View

4.
Kawaguchi H, Vertes A, Okino S, Inui M, Yukawa H . Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol. 2006; 72(5):3418-28. PMC: 1472363. DOI: 10.1128/AEM.72.5.3418-3428.2006. View

5.
Kuhlmann N, Petrov D, Henrich A, Lindner S, Wendisch V, Seibold G . Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum. Microbiology (Reading). 2015; 161(9):1830-1843. DOI: 10.1099/mic.0.000134. View